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Introduction and Summary

In the present paper a mathematical theory of cryptography
and secrecy systems is developed. The entire approach is on a
theoretical level and is intended to complement the treatmet found in
standard works on cryptography. There, a detailed study is made
of the many standard types of codes and ciphers, and of the wayof
breaking them. We will be more concerned with the general matematical
structure and properties of secrecy systems.

The presentation is mathematical in character. We rstdene
the pertinent terms abstractly and then develop our resultsas lemmas
and theorems. Proofs which do not contribute to an understarnling of the
theorems have been placed in the appendix.

The mathematics required is drawn chie y from probability
theory and from abstract algebra. The reader is assumed to hae
some familiarity with these two elds. A knowledge of the elements
of cryptography will also be helpful although not required.

The treatment is limited in certain ways. First, there are
two general types of secrecy system; (1) concealment systam
including such methods as invisible ink, concealing a mesga in an
innocent text, or in a fake covering cryptogram, or other metods in
which the existence of the message is concealed from the engni2)
\true" secrecy systems where the meaning of the message israealed
by cipher, code, etc., although its existence is not hiddenWe consider
only the second type|concealment systems are more of a psychiogical
than a mathematical problem. Secondly, the treatment is limted to the
case of discrete information, where the information to be eaiphered
consists of a sequence of discrete symbols, each chosen frannite
set. These symbols may be letters in a language, words of a lgnage,

See, for example, H.F.Gaines, \Elementary Cryptanalysis," or
M. Givierge, \Cours de Cryptographie.”
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amplitude levels of a \quantized" speech or video signal, at., but the
main emphasis and thinking has been concerned with the casd tetters.
A preliminary survey indicates that the methods and analyss can be
generalized to study continuous cases, and to take into accmt the
special characteristics of speech secrecy systems.

The paper is divided into three parts. The main results of
those sections will now be brie y summarized. The rst part deals with
the basic mathematical structure of language and of secrecgystems. A
language is considered for cryptographic purposes to be aathastic
process which produces a discrete sequence of symbols in @ciance with
some systems of probabilities. Associated with a languagehere is a
certain parameter D which we call the redundancy of the language D
measures, in a sense, how much a text in the language can be resd in
length without losing any information. As a simple example, if each word
in a text is repeated a reduction of 50 per cent is immediatelypossible.
Further reductions may be possible due to the statistical stucture of
the language, the high frequencies of certain letters or wals, etc. The
redundancy is of considerable importance in the study of seecy systems.

A secrecy system is de ned abstractly as a set of trans-
formations of one space (the set of possible messages) intesacond space
(the set of possible cryptograms). Each transformation of he set
corresponds to enciphering with a particular key and the transformations
are supposed reversible (non-singular) so that unique deghering is
possible when the key is known.

Each key and therefore each transformation is assumed to hav
an a priori probability associated with it|the probability of choosing
that key. The set of messages or message space is also assutoeldave
a priori probabilities for the various messages, i.e., to be a probality
or measure space.

In the usual cases the \messages" consist of sequences of
\letters." In this case as noted above the message space ispeesented
by a stochastic process which generates sequences of letterccording
to some probability structure.

These probabilities for various keys and messages are
actually the enemy cryptanalyst's a priori probabilities for the choices
in question, and represent hisa priori knowledge of the situation. To
use the system a key is rst selected and sent to the receivingoint.
The choice of a key determines a particular transformation mn the set
forming the system. Then a message is selected and the partitar
transformation applied to this message to produce a cryptogam. This
cryptogram is transmitted to the receiving point by a channel that may be
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intercepted by the enemy. At the receiving end the inverse othe
particular transformation is applied to the cryptogram to r ecover
the original message.

If the enemy intercepts the cryptogram he can calculate
from it the a posteriori probabilities of the various possible
messages and keys which might have produced this cryptogranThis
set of a posteriori probabilities constitutes his knowledge of the key
and message after the interception. The calculation of thesea
posteriori probabilities is the generalized problem of cryptanalysis

As an example of these notions, in a simple substitution
cipher with random key there are 26! transformations, corrsponding
to the 26! ways we can substitute for 26 di erent letters. These are all
equally likely and each therefore has ara priori probability 1 =26!. If
this is applied to \normal English" the cryptanalyst being a ssumed to have
no knowledge of the message source other than that it is Englh, the
a priori probabilities of various messages ol letters are merely
their frequency in normal English text.

If the enemy intercepts N letters of cryptogram in this
system his probabilities change. IfN is large enough (say 50 letters)
there is usually a single message @ posteriori probability nearly
unity, while all others have a total probability nearly zero. Thus
there is an essentially unigue \solution" to the cryptogram. For
N smaller (sayN = 15) there will be many messages and keys of
comparable probability, with no single one nearly unity. In this case
there are multiple \solutions" to the cryptogram.

Considering a secrecy system to be a set of trans-
formations of one space into another with de nite probabilities
associated with each transformation, there are two naturalcombining
operations which produce a third system from two given systms.
The rst combining operation is called the product operation and
corresponds to enciphering the message with the rst systeniR and
enciphering the resulting cryptogram with system S; the keys for R
and S being chosen independently. This total operation is a secy
system whose transformations consist of all the products (i the
usual sense of products of transformations) of transformabns in S
with transformations in R. The probabilities are the products of the
probabilities for the two transformations.

The second combining operation is \weighted addition."”

T:pR+qS p+q:1

\Knowledge" is thus identi ed with a set of propositions having
associated probabilities. We are here at variance with the doctrine
often assumed in philosophical studies which considers knowledge to be
a set of propositions which are either true or false.
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It corresponds to making a preliminary choice as to whether
systemR or S is to be used with probabilities p and g, respectively.
When this is doneR or S is used as originally de ned.

It is shown that secrecy systems with these two combining
operations form essentially a \linear associative algebrawith a unit
element, an algebraic variety that has been extensively, stdied by
mathematicians. Some of the properties of this algebra are @leloped.

Among the many possible secrecy systems there is one type
with many special properties. This type we call a \pure" system. A
system is pure if for any three transformationsT;, T;, T in the set
the product

T Tk

is also a transformation in the set, and all keys are equallyikely.
That is enciphering, deciphering, and enciphering with anythree keys
must be equivalent to enciphering with some key.

With a pure cipher it is shown that all keys are essentially
equivalent|they all lead to the same set of a posteriori probabilities.
Furthermore, when a given cryptogram is intercepted there § a set of
messages that might have produced this cryptogram (a \reside class")
and the a posteriori probabilities of messages in this class are
proportional to the a priori probabilities. All the information the enemy
has obtained by intercepting the cryptogram is a speci cation of the
residue class. Many of the common ciphers are pure systemsciuding
simple substitution with random key. In this case the residue class
consists of all messages with the same pattern of letter repiéons
as the intercepted cryptogram.

Two systemsR and S are de ned to be \similar" if there
exists a xed transformation A with an inverse, A 1 such that

R=ASA !

If R and S are similar, a one-to-one correspondence between the
resulting cryptograms can be set up leading to the same posteriori
probabilities. The two systems are cryptanalytically the same.

The second main part of the paper deals with the prob-
lem of \theoretical security”. How secure is a system agains
cryptanalysis when the enemy has unlimited time and manpowe
available for the analysis or intercepted cryptograms?
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\Perfect Secrecy" is de ned by requiring of a system
that after a cryptogram is intercepted by the enemy the a posteriori
probabilities of this cryptogram representing various mesages be
identically the same as thea priori probabilities of the same
messages before the interception. It is shown that perfectexrecy
is possible but requires, if the number of messages is nitethe
same number of possible keys|if the message is thought of as hiag
constantly generated at a given \rate" R, (to be de ned later), key
must be generated at the same or a greater rate.

If a secrecy system with a nite key is used, andN
letters of cryptogram intercepted, there will be, for the eremy, a
certain set of messages with certain probabilities, that ths cryptogram
could represent. AsN increases the eld usually narrows down until
eventually there is a unique \solution" to the cryptogram|on e
message with probability essentially unity while all others are practically
zero. A quantity Q(N) is de ned, called the equivocation, which measures
in a statistical way how near the average cryptogram ofN letters is to a
unique solution; that is, how uncertain the enemy is of the orginal
message after intercepting a cryptogram oN letters. Various properties
of the equivocation are deduced|for example the equivocation of the key
never increases with increasindg\ . This quantity Q is a theoretical secrecy
index|theoretical in that it allows the enemy unlimited time to analyse
the cryptogram.

The function Q(N) for a certain idealized type of cipher
called the random cipher is determined. With certain corredions this
function can be applied to many cases of practical interest.This gives a
way of calculating approximately how much intercepted mateial is
required to obtain a solution to a secrecy system. It appear$rom this
analysis that with ordinary languages and the usual types oftiphers (not
codes) this \unicity distance" is approximately jK j=D. Here jKj is a
number measuring the \size" of the key space. If all keys are priori
equally likely jKj is the logarithm of the number of possible keys.D is
the redundancy of the language and measures the excess infeetion
content of the language. In simple substitution with random key on English
jKj is log; 26! or about 20 andD is about .7 for English. Thus unicity occurs
at about 30 letters.

It is possible to construct secrecy systems with a nite
key for certain \languages" in which the function Q(N) does not approach
zeroasN !'1 . In this case, no matter how much material is intercepted,
the enemy still does not get a unigue solution to the cipher btiis left with
many alternatives, all of reasonable probability. Such syeems we call
ideal systems. It is possible in any language to approximate suchds
havior|i.e., to make the approach to zero of Q(N) recede out to
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arbitrarily large N. However, such systems have a number of draw-
backs, such as complexity and sensitivity to errors in transnission of
the cryptogram.

The third part of the paper is concerned with \practical
secrecy." Two systems with the same key size may both be unialy
solvable whenN letters have been intercepted, but di er greatly in the
amount of labor required to e ect this solution. An analysis of the basic
weaknesses of secrecy systems is made. This leads to methéatsconstructing
systems which will require a large amount of work to solve. A ertain
incompatability among the various desirable qualities of gcrecy systems is
discussed.
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PART |
FOUNDATIONS AND ALGEBRAIC STRUCTURE OF SECRECY SYSTEMS

1. Choice, Information and Uncertainty

Suppose we have a set of possible events whose proba-

known, but that is all we know concerning which event will ocarr. Can
we de ne a quantity which will measure in some sense how \uncgain"
we are of the outcome? How much \choice" is involved in the selction
of the event by the chance element that operates with these mba-
bilities? We propose as a numerical measure of this rather \gue
notion the quantity

X0
H= pi logpi:
i=1
There are many reasons for this particular formula. Quantities of this
kind appear continually in the present paper and in the study of the
transmission of information.

To justify this de nition we will state a number of
properties that follow from it. These properties will not be proved
here, q:l,lt are easily deduced from the de nition. Properties of

H = pi logp;

1. H =0 if and only if all the p; but one are zero, this one having the
value unity. Thus only when we are certain of the outcome doe#d vanish.

2. For a givenn, H is a maximum and equal to logn if and only if all
the p;. are equal (i.e. En). This is also intuitively the most uncertain.
situation.

3. Suppose there are two events in question, withm possibilities for the
rst and n for the second. Letp; be the probability of the joint
occurrence ofi for the rst and | tor the second. The uncertainty of
the joint event is

X
H = e
iij
P
For given probabilities pi = ; p; for the rst and

It is intended to develop these results in coherent fashion in a
forthcoming memorandum on the transmission of information.
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P
g = ;p; forthe second, the quantity H is maximized if and only if
the events are independent, i.e.p; = pig. This maximum value, is the
sum of the individual uncertainties

H = H:p"‘ H» p
pi logpi G logg:
These facts can be generalized to any number of di erent eves.

4. Suppose there are two chance events and B as in 3, not necessarily
independent. We de ne the mean conditional uncertainty of B, knowing A
as

_ X
Ha = p(A)HA(B)
A

where H (B) is the uncertainty of B when A has a de nite value A

Thus H (B) is the average uncertainty of B for all di erent events

A, weighted according to their di erent probabilities of occurrence. The
uncertainty of the joint event is the sum of the uncertainty of the rst and
the mean conditional uncertainty of the second. In symbols

H(A;B)= H(A)+ Ha(B)
This is true whether or not there are any casual connections 10
correlations between the two events.

5. In the same situation the uncertainty of B is not greater than the
joint uncertainty H(A;B).

H(B) H(AB)

The equality holds if and only if every B (of probability greater
than zero) is consistent with only oneA. That is, if A is uniquely de-
termined by B.

6. From properties 3 and 4 we have

H(A) + H(B) H(AB)
H(B) H(A;B) H(A)
H(A)+ Ha(B) H(A)

H(B)  Ha(B)
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Thus the uncertainty of B is not greater than its average value when
we know A. Additional information never increases average un-
certainty. The equality holds if and only if A and B are independent.

7. Suppose we have a set of probabilitieps; p2;:::;pn
Any change toward equalization of these (supposing them urgual)
increasesH. Thus if p; p, and we increasep;, decreasingp,
an equal amount (to keep the sum p; constant at unity) so that p;
and p, are more nearly equal, thenH increases. More generally if
we perform any \averaging" operation on the p; of the form

0 X
b= aj by

P . .
where ;a; =1andall a3 0 thenH increases (except in the
special case where this transformation amounts to no more tn

a permutation of the p; with H of course remaining the same).

8. H measures in a certain sense how much \information is
generated" when the choice is made. Suppose such a chance rve
occurs and we wish to describe which of the possible events
took place. The average amount of paper required to write it
down in a properly chosen notation is in the cases of interesto
us, about proportional to H. Thus there might be 16°° + 10%°
possible events, with 16° of them having a probability 10 3°
and 10 *° a probability of 210 %°. We could set up a notational
system to describe which event occurs as follows. We numbehé
events from 1 up to 1G° + 10°° and when one occurs write down
the corresponding number. The average amount of paper
required will be proportional to the average number of digits we
need. This will be nearly 30 if the event is in the rst group of
10°° and about 50 if in the second group. Thus the average
number of digits is about 40. We also have

1, 1 1, 1 -
— 0+ 44030 0+ L1050 =
H= 10° 2I092103 10° 2I092105 40
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9. Although the last result is only approximately true when the
number of choices is nite it becomes exactly true when an
unlimited sequence of choices is made. Thus if a sequence of
N independent choices is taken each choice being from

amount of information generated is

X

H= N plogp
If N is su ciently large, the expected number of digits required
to register the particular choice made is arbitrarily closeto H,
providing the correspondence between sequences of digitadisets
of choices is correctly made. If incorrectly made it will be
greater than H. Moreover, if N is su ciently large the probability
of needing much more thanH digits is very small.

10. It can be shown that if we require certain reasonabIE, proerties of
a measure of choice or uncertainty then the formula pi logp;
necessarily follows. These required properties and the pad of
this statement are given in Appendix I. The chief property is that
the measure be in a sense additive|if a choice be decomposed
into a series of choices the total choice is the sum (properly
weighted) of the individual choices.

11. Finally we note that quantities of the type P pi logp; have appeared
previously as measures of randomness, particularly in stédtical
mechanics. Indeed theH in Boltmann's H theorem is de ned in
this way, p; being the probability of a system being in celli of its
phase space. Most of the entropy formulas contain terms of tis type.

The base which is used in taking logarithms in the formula.
amounts to a choice of the unit of measure. If the base is 10
we will call the resulting units \digits;" if the base is two t he
units will be called \alternatives.” One digit is about 3.3
alternatives. A choice from 1000 equally likely possibilites is
3 digits or about 10 alternatives.

2. Language as a Stochastic Process

A natural language, such as English, can be studied
from many points of view|lexicography, syntax, semantics,
history, aesthetics, etc. The only properties of a language
of interest in cryptography are statistical properties. What
are the frequencies of the various letters, of di erent digams
(pairs of letters), trigrams, words, phrases, etc.? What isthe
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probability that a given word occurs in a certain message? Tl
\meaning" of a message has signi cance only in its in uence
on these probabilities. For our purposes all other propertes of
language can be omitted. We consider a language, therefor&g
be a stochastic (i.e., a statistical) process which generas a
sequence of symbols according to some system of probabiés.
The symbols will be the letters of the language, together wih
punctuation, spaces etc., if these occur.

Conversely any stochastic process which produces a disceet
sequence of symbols will be said to be a language. This will @lude such
cases as:

1. Natural written languages such as English, German, Chinsge.

2. Continuous information sources that have been renderedidcrete
by some quantizing process. For example, the quantized spefe
from a PCM transmitter, or a quantized television signal.

3. \Arti cial" languages, where we merely de ne abstractly a
stochastic process which generates a sequence of symbolhieT
following are examples of arti cial languages.

(A) Suppose we have 5 letters A,B,C,D,E which are chosen each
with probability .2, successive choices being independent
This would lead to a sequence of which the following is a
typical example.

BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD

This was constructed with the use of a table of random
numbers.

(B) Using the same 5 letters let the probabilities be .4, .1, 2,
.2, .1 respectively, with successive choices independeni
typical \text" in this language is then:

AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD

(C) A more complicated structure is obtained if successive
letters are not chosen independently but their probabilities
depend on preceding letters. In the simplest case of this

Kendall and Smith, \Tables of Random Sampling Numbers"
Cambridge, 1939.
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type a choice depends only on the preceding letter and not
on ones before that. The statistical structure can then be
described by a set of transition probabilitiesp; (j ), the
probability that letter i is followed by letter j. The indices

i and j range over all the letters in the language. A second
equivalent way of specifying the structure is to give the
digram probabilities p(i;j ), the relative frequency of the
digram ij in the language. The letter frequencies(i),

(the probability of letter i). the transition probabilities p;(j)
and the digram probabilities p(i;j ) are related by the
following formulas.

. P . P . P . .
p(i)= "y p@i)=;pGi)=";pG()p ()
p(i;j ) = p(i)Ppi () b
jpi(j): ip(i): i p(i;j)=1
As a speci ¢ example suppose there are three letters A, B, C wh the
probability tables:

O p(i) pii) | j
A B C A B C
~ AJ0 8 2 A % A 8 f? i
i B|5 5 0 B ? i B ? 7 (1)
CcC|5 4 1 C 5 C 3% 135 135

A typical text in this language is the following.

ABBABABABABABABBBABBBB
ABABABABBBACACABBABBBB
ABACBBBABA

BAB
ABB

The next increase in complexity would involve trigram frequencies
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but no more. The choice of a letter would depend on the precedg
two letters but not on the text before that point. A set of trig ram
frequenciesp(i; j; k ) or equivalently a set of transition proba-
bilities p; (k) would be required. Continuing in this way one
obtains successively more complicated stochastic process In

to specify the statistical structure.

(D) Stochastic processes can also be de ned which produce att
consisting of a sequence of \words." Suppose there are 5 letts
A, B, C, D, E, and 16 \words" in the language with associated

probabilities:
10 A :16 BEBE :11 CABED :04 DEB
:04 ADEB :04 BED :05 CEED :15 DEED
:05 ADEE :02 BEED :08 DAB :01 EAB
:01 BADD :05 CA :04 DAD :05 EE

Suppose successive \words" are chosen independently andear
separated by a space. A typical message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE
BEBE ADEE BED DEED DEED CEED ADEE A DEED DEED BEBE
CABED BEBE BED DAB DEED ADEB

If all the words are of nite length this process is equivalen to
one of the preceding type, but the description may be simpletn
terms of the word structure and probabilities. We may also
generalize here and introduce transition probabilities béwveen
words, etc.

These arti cial languages are useful in constructing simp-
le problems and examples to illustrate various possibilites. We can also
approximate to a natural language by means of a series of sinhg arti cial
languages. The zero order approximation is obtained by chaing all
letters with the same probability and independently. The r st order
approximation is obtained by choosing successive lettersdependently but
each letter having the same probability that it does in the natural language.
Thus in the rst order approximation to English E is chosen with
probability .12 (its frequency in normal English) and W with probability .02,
but there is no in uence between adjacent letters and no ten@ncy to form
the preferred digrams such as TH, ED, etc. In the second order
approximation digram structure is introduced. After a lett er is chosen, the
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next one is chosen in accordance with the frequencies with vith the
various letters follow the rst one. This requires a table of digram
frequenciesp; (j ), the frequency with which letter j follows letter i. In the
third order approximation trigram structure is introduced . Each letter is
chosen with probabilities which depend on the preceding twdetters.

3. The Series of Approximations to English

To give a visual idea of how this series of processes approash
a language, typical sequences in the approximations to Enigh have been
constructed and are given below. In all cases we have assumad®27
symbol \alphabet," the 26 letters and a space.

1. Zero order approximation (symbols independent and equimbable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSCXYD
QPAAMKBZAACIBZLHJIQD

2. First order approximation (symbols independent but with
frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

3. Second order approximation (digram structure as in Englgh).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE
SEACE CTISBE

4. Third order approximation (trigram structure as in Engli sh).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME

OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF
CRE

5. 1st Order Word Approximation. Rather than continue with
tetragram,
:I:, n-gram structure, it is easier and better to jump at this point to
word units. Here words are chosen independently but with thé
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE
TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.
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6. 2nd Order Word Approximation. The word transition
probabilities are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED

The resemblance to ordinary English text increases quite
noticeably at each of the above steps. Note that these sampiehave
reasonably good structure out to about twice the range that s taken into
account in their construction. Thus in (3) the statistical p rocess insures
reasonable text for two-letter sequence, but four-letter equences from the
sample can usually be tted into good sentences. In (6) sequees of 4 or
more words can easily be placed in sentences without unusual strained
constructions. The particular sequence of ten words \atta& on an English
writer that the character of this" is not all unreasonable.

The rst two samples were constructed by the use of a book of
random numbers in conjunction for (2) with a table of letter frequencies. This
method might have been continued for (3), (4), and (5), sincedigram, trigram,
and word frequency tables are available, but a simpler equaient method was
used. To construct (3) for example one opens a book at randomral selects a
letter at random on the page. This letter is recorded. The bod is then opened
to another page and one reads until this letter is encounterd. Thesucceeding
letter is then recorded. Turning to another page this secondetter is searched
for and the succeeding letter recorded, etc. A similar procgs was used for (4),
(5), and (6). It would be interesting if further approximati ons could be
constructed, but the labor involved becomes enormous at theext stage.

The stochastic process 6 is already su ciently close to
English for many cryptographic purposes since most cryptaalysis is
based on \local" structure of not more than two or three words in length.

4. Graphical Representation of a Marko Process

Stochastic processes of the type described above are
known mathematically as discrete Marko processes and havdeen
extensively studied in the literature. The general case can be described
as follows. There exist a nite number of possible \states" d a system:

For a detailed treatment see M. Frechet, \Methods des fonctions
arbitraires. Theorie deseverements en chaine dans le cas d'un nombre
ni détats possibles," Paris, Gauthier-Villars, 1938.
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the probability that if the system is in state S; it will next go to state S;.
To make this Marko process into a language generator we neeanly
assume that a letter is produced for each transition from onestate to an-
other. The states will correspond to the \residue of in uence" from
preceding letters.

The situation can be represented graphically as shown in
Figs. 1, 2, 3 and 4. The \states" are the junction points in the graph and
the probabilities and letters produced for a transition are given beside the
corresponding line. Fig. 1 is for the example B in Section 2, While Fig. 2,
corresponds to the example C. In Fig. 1 there is only one statsince
successive letters are independent. In Fig. 2 there are as mg states
as letters. If a trigram example were constructed there woul be at most
n 2 states corresponding to the possible pairs of letters peeding the one
being chosen. Figs. 3 and 4 show two graphs for the case of word
structure in example D. In these S corresponds to the \space" symbol. In
Fig. 3 each word has a separate chain of branches from the lefib the right
junction point, while in Fig. 4 the branches have been combied, simplifying
the graph.

5. Pure and Mixed Languages

As we have indicated above a \language" for our purposes cand
considered to be generated by a Marko process. Among the
possible discrete Marko processes there is a group with spéal
properties of signi cance in cryptographic work. This spedal class
consists of the \ergodic" processes and we shall call the casponding
languages \pure languages." Although a rigorous de nition of an
ergodic process is somewhat involved, the general idea isrgble. In an
ergodic process every sequence produced by the process is game in
statistical properties. Thus the letter frequencies, digam frequencies,
etc., obtained from particular sequences will, as the lendts of the
sequences increases, approach de nite limits independemtf the particular
sequence. Actually this is not true of every sequence but theet for which
it is false has probability zero. Roughly the ergodic propety means
statistical homogeneity.

All the examples of arti cial languages given above are pure
the corresponding Marko process being ergodic. This propsy is
related to the structure of the corresponding graph. If the gaph has
two properties the language it generates will be pure. Thesgroperties
are:
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1. The graph cannot be divided into two parts A and B such that it
is impossible to go from junction points in part A to junction
points in part B along lines of the graph in the direction of arrows
and also impossible to go from nodes in part B to nodes in part A

2. A closed series of lines in the graph with all arrows on theihes
pointing in the same orientation will be called a \circuit." The
\length" of a circuit is the number of lines in it. Thus in Fig. 4
the series BEBES is a circuit of length 4. The second property
required is that the greatest common divisor of the lengths 6 all
circuits in the graph be one.

If the rst condition is satis ed but the second one
violated by having the greatest common divisor equal tod > 1, the sequences
have a certain type of periodic structure. The various sequeces fall
into d di erent classes which are statistically the same apart fran a
shift of the origin (i.e. which letter in the sequence is caléd letter 1). By
a shift of from O up to d 1 any sequence can be made statistically
equivalent to any other. A simple example with d = 2 is the following.
There are three possible letters a,b,c. Letter a is followedvith
either b or ¢ with probabilities % and % respectively. Either b or c is
always followed by letter a. Thus a typical sequence is

abacacacabacababacac:

This type of situation is not of much importance for our work.

If the rst condition is violated the graph may be \separated "
into a set of subgraphs each of which satis es the rst condifon. We
will assume that the second condition is also satis ed for eeh subgraph.
We have in this case what may be called a \mixed" language madeip of a
number of pure components. The components correspond to thearious
subgraphs. IfLy;L,;L3s;::: are the component languages we may
write

L=pls+ plo+t psls+

where p; is the a priori probability of the component languagel;.

Physically the situation represented is this. There: are
several di erent languagesL 1;L2;L3s;::: which are each of
homogeneous statistical structure (i.e., they are pure laguages). We
do not know a priori which is to be used, but once the sequence starts
in a given pure componentL; it continues inde nitely according to the
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statistical structure of that component. We do have, howeve, a set
of a priori probabilities for the various components,ps;; pz;:::.

As an example one may take two of the arti cial languages
de ned above and assumep; = :2 and p, = :8. A sequence from the
mixed langunge

L=:2L,+ :8L>

would be obtained by choosing rstL; or L, with probabilities .2 and
,8 and after this choice generating a sequence from whichevevas
chosen.

A natural language, such as English or German, is not, of
course, pure. Di erent kinds of text, literary, newspaper, technical or
military, display consistently di erent types of structur e. These
di erences are small, however, in comparison with the di erences
between di erent natural languages. If only local structure]letter,
digram and trigram frequencies, for instancelis of much impo rtance,
it is reasonable to consider \normal English" to be nearly pue.

6. Information Rate and Redundancy of a Language

Suppose we have a pure language L produced by a given
Marko process. Associated with the language there are cedin
parameters which are of signi cance in questions of transfoning the
language and in cryptography. The most important of these iswhat we
will call the \information rate" R for the language. It measures the
rate at which the Marko process \generates information,” as de-
termined by the measurement of the amount of choice availald on the
average per letter of text that is produced. In Section 1 we dened
the amount of choice when there are various possibilities wh proba-

X
H = pi logpi
In a Marko process with a number of di erent \states" there w ill be
a choice valueH; for each of these states and a probability of being in
each of the states (or a frequency with which this state occws). If
this relative frequency for statei is p;, the average amount of choice is

X
R= " piH;

summed over all the states. This is the de nition of the information rate
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for the language. Ifp;(j) is the probability of producing letter j when in
state i we have

X
Hi = pi(j)logpi(j)

the sum being over all the letters in the language. Thus

X
R= pipi(j)logpi(i)
ij

The information rate R has the units of alternatives (or
digits) per letter since it measures the average amount of abice per
letter of text that is produced.

A second parameter of importance is the \maximum
rate" Rg for the source. This is de ned simply as the logarithm of the
number of di erent letters in the language. R is also measured in al-
ternatives or digits per letter. If successive letters are bosen inde-
pendently and each letter is equally likelyRg = R. Otherwise we have
R<Ry.

R and Rq are actually two limiting cases of information
rates for the language.Ry may be said to be the rate when no statistical
structure is taken into consideration and R is the rate when all the
structure is taken into account. Between these there is an imite series

into account. R; takes the letter frequencies into account and is de ned
by

X
Ri = p(i)logp(i)

where p(i) is the probability of letter i.
R, takes digram structure into account and is de ned by

X
Rz= p()pi()logpi()
where the p(i) are letter probabilities and p;(j) the transition
probabilities, i.e., the probability of letter i being followed by
letter j. In general we de ne

X
Rn: p(il;iZ;:::;in :L)piliz;:::;in 1pi1i2;:::;in 1(in)
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where the sum is on all indicesiy;:::;iy and pi, i, ,
is the probability of (n  1)- gramiy:::ip 1 with
Pisi,:i o 4 (In) the probability of this (n  1)-gram being followed by

letter i,. R, may be called then-gram information rate for the
language. It can be shown that

Ro Rl R2 Rn Rl =R

These rates determine how much a language can be \compressed
in length by a suitable encoding processA language with maximum
rate Rg and rate R can be transformed in such a way that a
sequence of letterdN letters long is transformed into a sequence of
letters only N ° letters long where

N°Ry = NR

(This is approximate and only exactly true in the limitas N '1 )
Thus the information is \compressed" in the ratio

R

Ro
This is the greatest compression ratio possible. It makes wsof all
the statistical structure of the language. If only n-gram structure is
made use of, a compression ratio

Rn
Ro
is the best possible.

The compression obtained in this way is only a
statistical gain. Some infrequent sequences are encodeddnmuch
longer sequences while the more probable ones go into sharte
sequences so that on the average the length is decreased. dtthe
type of compression obtained in telegraphy by using the shaest
telegraph symbol, a single dot, for the most frequent letterE, while
the uncommon letters Q, Z, etc., are encoded into longer tegraph
symbols. An average reduction in time of transmission is okdined
but there are possible sequences, e.dQQQ:::, which require much
longer.

Performing a transformation on a language L which
compresses as much as possible will be called reducing L to a
\normal" form. When this has been done it can be shown that all
letters in the output are equally likely and independent. Actually to
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realize this transformation would usually require an in nitely
complex machine, but we can always approximate it as closelgs
desired with a machine of nite complexity.

The quantity

D=Ro= R

will be called the redundancy rate of the language. It measuwss the
excess information that is sent if sequences in the languagee
transmitted in their original form (without compression or reduction

to normal form). Correspondingly there is a whole series ofedundancy
rates:

D:1=Ro R:

D2: R]_ Rz
Dnh=Ro Ry
D=Ryg R

D, is the redundancy rate due ton-gram structure in the language.

The redundancy D can also be said to measure the amount of
statistical structure in the language. If the sequence is ptely random
D =0 while at the other extreme if each letter is completely determined
by preceding letters with no freedom of choiceD has its maximum
possible valueRy. It is sometimes convenient to use the \relative"
redundancy D=Ry which must lie between 0 and 100%.

If we have a source of rateR, maximum rate Rq (both in digits
per letter) and consider the possible sequences df letters these fall
into two groups for N large. One group of \high probability" sequences
contains about

10RN
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sequences (where we have assum& measured in digits per letter).

All of these have substantially the same logarithmic probalility.

The remainder of the total of 10%°N possible sequences are of very small
probability. In fact their total probability approaches ze ro asN increases.
The logarithm of the probability of an individual sequence in the high
probability group is thus about -RN. In a precise statement d these
results we must allow a certain fuzziness irR, i.e., replaceR by R

where ! OasasN !'1

Reduction of a language to normal form is performed by propdy
matching the probabilities of sequences to the length of thecorresponding
sequences in the normal form. The \high probability" sequerces are
translated into short sequences and the remainder into longr sequences.

An example will clarify the results we have given. Let the
language contain 4 lettersA, B, C, D. In a sequence successive letters
are chosen independently, the four letters having probabities 1=2, 14,
1-=8, 1-8, respectively. We have

Ro =log, 4 = 2 alternatives = letter

and

Ri = Ry=R3= = R= (1=2log1=2 + 1=4log 1=4 + 2=8log 1=8)
=1=2+1=2+6=8 = 7=4 alternatives = letter

By a suitable transformation the average length of sequencecan be
reduced by the factor ? = 7=8. A transformation to do it is the
following. First we translate into a sequence of binary digis (0 or 1)
by the following table

A 0
B 10
C 110
D 111

After this pairs of the binary digits are translated into the original
alphabet as follows

00 A°
01 B°
10 C°
11 D°
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For a typical sequence this works out as shown below:
Translation into binary digits:

A B C A BAC B B D A A D A D A
0 10 110 0 10 O 110 10 10 111 O O 111 O

Regrouping and translation back into letters:

01 01 10 01 0O 11 01 01 01 11 OO 11 10 11 10
B? B? c® BY A® DO BY B B? DO A® DO cC DO C°
In this case there are 16 letters in the original and 15 in the nal text.
Thus due to the small redundancy and the shortness of the texbnly part
of the saving is evident. In a long text however the full redugion of 1=8
would appear. This may be veri ed directly in this case. In a long text of
N letters each letter will appear with about its appropriate frequency. Thus
the number of binary digits will be about

7
N[1=2 1+1=4 2+1=8 3+1=8 3]= ;N

since eachA gives one binary digit, eachB gives two, etc. The number
of letters in the nal text is half this since each pair of binary digits
goes into one letter. Thus the reduction is by a factor 78.

It is also easy to see in this case that the binary digits are
equally likely and independent, and from this that the nal t ext letters are
also.

This situation is more complicated for mixed languages and &
shall not enter into it here, We may note, however, that if
L=piLa+ plo+  + pnlg

where L; is pure with rate R("), then the 1ong sequences df fall
into (n + I) groups. The rst n groups correspond to then pure components.
Those in groupi number about

1RN
and have logarithmic probability about

RN

The last group contains all other sequences and has a small tal
probability.

7. Redundancy Characteristic of a Language

The form of the curve D(N) as a function of N may be called
the redundancy characteristic of the language. In a rough wa it describes
the way in which the redundancy appears. In Fig. 5 several tygs of
characteristics are shown, all with the same nal redundang. The way in
which this approach occurs is of importance in cryptography For
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languages which reach the nal redundancy at one or two lettes (Curves
1 and 2) one type of cipher (ideal ciphers) can be used. For tts® which
remain near zero out to fairly large N (like Curve 5) another type is
appropriate. Natural languages are apt to show a charactestic more
like 3, and this makes them di cult to encipher with security by simple
means.

Examples:
1. A language in which successive letters are independent
but with di erent probabilities has a characteristic of
Type .

2. Consider a language constructed as follows. First select
26° di erent sequences of letters, each 16 letters long

from the 26'® possible sequences of this length.

This should be a random selection. The 16-letter sequences
chosen are the \words" of the language. Messages are
random sequences of these \words." Such langunge has

a characteristic like the Curve 5.

3. A language with digram structure only, such as Example
C in Section 2 above, has a characteristic of the Type 2
in Fig. 5, reaching its nal value at N = 2.

4. English has the characteristic 3 in Fig. 5.

The redundancy characteristic describes how the
structure in the language is spread out. If the structure is bcalized,
the curve rises rapidly to its nal value. If there are long range in
in uences the asymptotic value is approached more slowly. flthe
structure is \locally" random the curve will remain near
zero for smallN.
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8. Secrecy Systems

Before we can apply any mathematical analysis to secrecy
systems, it necessary to idealize the situation suitably, ad to de ne in a
mathematically acceptable way what we shall mean by a secrgcsystem.
A \schematic" diagram of a general secrecy system is shown ifig. 6. At
the transmitting end there are two information sources|a mes sage
source and a key source. The key source produces a particulkey from
among those which are possible in the system. This key is trasmitted by
some means, supposedly not interceptible, e.g., by messeasrgto the
receiving end, The message source produces a message (thieac")
which is enciphered, and the resulting cryptogram sent to tke receiving
end by a possibly interceptible means, for example radio. Athe
receiving end the cryptogram and key are combined in the depherer to
recover the message.

Evidently the encipherer performs a functional operation. If
M is the messageK the key, and E the enciphered message, or cryptogram,
we have

E=f(MK)

i.e., E is a function of M and K. We prefer to think of this, however, not as
a function of two variables but as a (one parameter) family ofoperations or
transformations, and we write it

E=TM

The transformation T; applied to messageM produces cryptogram.
E. The index i corresponds to the particular key being used. If there arem
possible keys there will bem transformations in the family Ty;To;:::Tn.

At the receiving end it must be possible to recoverM , knowing
E and K. Thus the transformations in the family must have unique inverses

M=T 'E

at any rate this inverse must exist uniquely for everyE which can be
obtained from an M with key i.

The key source can be thought of as a \probability machine,"
something which chooses from the possible keys according tosystem
of probabilities. Mathematically then, the keys (or the parameter of the
family of transformations) belong to a probability or measure space.
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Hence we arrive at the de nition:

A secrecy system is a family of uniquely reversible trans-
formations T; of a message spacey into a cryptogram space g, the
parameter i belonging to a probability space g . Conversely any set of
entities of this type will be called a \secrecy system".

The system can be visualized mechanically as a machine
with one or more controls on it. A sequence of letters, the mesage,
is fed into the input of the machine and a second series emerget the
output. The particular setting of the controls corresponds to the particular
key being used. Some method must be prescribed for choosinge key
from all the possible ones.

To make the problem mathematically tractable we shall
assume that the enemy knows the system being used. That is, he knows
the family of transformations T, and the probabilities of choosing various
keys.

One might object to this as being unrealistic, in that the
cryptanalyst often does not know what system was used or the
probabilities of various keys. There are two answers to thibjection.

Examples:
1. The assumption is actually the one ordinarily used
in cryptographic studies. It is pessimistic and
hence safe, but in the long run realistic
(particularly in military work), since one must expect his
system to be found out eventually through espionage,
captured equipment, prisoners, etc. Thus, even
when an entirely new system is devised, so that the enemy
cannot assign anya priori probability to it without
discovering it himself, one must still live with the
expection of his eventual knowledge.

2. The restriction is much weaker them appears at rst,
due to our broad de nition of what constitutes the
system. Suppose a cryptographer intercepts a message
and does not know whether a substitution, transposition,
or Vigerere type cipher was used. He can consider

this as being enciphered by a system in which

part of the key is the speci cation of which of these
types was used, the next part being the particular

key for that type. These three di erent possibilities

are assigned probabilities according to his

best guess of of thea priori probabilities of the
encipherer using the respective types of cipher.
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A second possible objection to our de nition of secrecy sysgms
is that no account is taken of the common practice of insertig nulls in a
message and the use of multiple substitutes. Thus there is @ unique
E = T;M, but actually the encipherer can choose at will among a numbe
of dierent E's for the same message and key. This situation could be
handled, but would only add complexity at the present stage,without
altering any of the basic results. To de ne the more general screcy
system, one would add a second parameter to the transformatins T;
which corresponds to the various choices of cryptograms coesponding
to a given message and key. It is possible, but not always desble, to
consider this second parameter as part of the key, since it d&s not need
to be transmitted to the receiving point.

We also assume that the enemy is in possession of a measure
in the space \, the a priori probabilities of various messages. The
same objection and essentially the same answers might be giw to this
assumption as to his knowledge of the transformationsl;. This measure,
however, we do not consider as part of the secrecy system foeasons
which will appear later. The secrecy system whose transforations are
T; will be denoted by T and this concept includes the space ,; on which
T operates (without its measure), the transformationsT; and the spaces

k and g, the former with its probability measure.

If the messages are produced by a Marko process of the type
described previously, the probabilities of various messags are determined
by the structure of the Marko process. For the present, however, we wish
to take a more general view of the situation and regard the mesages as
merely an abstract set of entities with associated probabities, not
necessarily composed of a sequence of letters and not neeceg produced
by a Marko process.

It should be emphasized that throughout the paper a secrecy
system means not one but a set of many transformations. Aftethe key
is chosen only one of these transformations is used and we rhigbe led
to de ne a secrecy system as a single transformation on a langge.

The enemy, however, does not know what key was chosen and thenlight
have been" keys are as important for him as the actual one. Inded it is
only the existence of these other possibilities that giveshe system

A.A Albert in a paper presented at a Manhattan, Kansas, meeting of the
American Mathematical Society (Nov. 22, 1941), entitled \Some Mathem atical
Aspects of Cryptography,” has de ned a ciphering system in this way. Wit  h
this limited de nition about all one can do is to describe and classify f  rom
the mathematical point of view various types of transformations.



-27- CONHBENTHA—

any secrecy. Since the secrecy is our primary interest, we arforced

to this rather elaborate concept of a secrecy system. This tye of
situation where possibilities are as important as actualites is almost
the rule in games of strategy. The course of a chess game is dgly
controlled by threats which are not carried out. See also the \virtual
existence" of unrealized imputations in von Neumann's theoy of games.

There are a number of di cult epistemological questions
connected with the theory of secrecy, or in fact with any theay which
involves questions of probability (particularly a priori probabilities,
Bayes' theorem, etc.) when applied to a physical situation. Treated
abstractly, probability theory can be put on a rigorous logical basis
with the modern measure theory approach. As applied to
reality, however, especially when \subjective" probabilities
and unrepeatable experiments are concerned, there are
many questions of logical validity. For example in the appraach
to secrecy made herea priori probabilities of various keys
are assumed known by the enemy cryptographer|how can one
determine operationally if his estimates are correct, on tle
basis of his knowledge of the situation?

It may happen that the keys are chosen by the encipherer
according to one system of probabilities, i.e., one measuria the key
space g and that the enemy cryptanalyst estimates a second di erent
system of probabilities % in this space which are entirely reasonable
in the light of his knowledge of the situation|which is correc t? | be-
lieve both are correct. The calculation based on g leads to the
solution when the enemy knows just how the keysare chosen and the
solution based on K leads to solutions which are correct for a
situation agreeing with the enemy's knowledge of the actuakituation.
It appears intuitively that the enemy's lack of knowledge can only do
him harm, and probably this can be proved, but this question has not
been investigated. In fact, we assume only one measureg in the key
space. Similar remarks may be made regarding measure in the
message space y .

See J. L. Doob, \Probability as Measure," Annals of Math.
Stat., v. 12, 1941, pp. 206{214.
A. Kolmogoro , \Grundbegri e der Wahrscheinlichkeits
Rechnung," Ergebnisse der Mathematic, v.2, No. 3 (Berlin
1933).
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Actually in practical situations, only extreme errors in a
priori probabilities of keys and messages cause much error in the
important parameters. This is because of the exponential bleavior of
the number of messages, etc., and the logarithmic measuresngloyed.

With regard to the application of the mathematical theory of
probability to physical situations there are two main theories or ways
of setting up the correspondence. (1) The frequency theory.
Probability is correlated with relative frequency of an event. This is the
correspondence used by the practicing statistician, in pciple by the
physicist, etc. (2) The degree of belief approach. Probabity is a
subjective phenomena and measures one's degree of belieftlire
occurrence of an event. This approach is seen often in the werof
historians, judges, and in everyday life. Although this latter approach
has often been attacked as meaningless we cannot agree withig
opinion. In the rst place the intuitive approach can be given a
rigorous mathematical foundation. This has been done in a vy elegant
way by B. O. Koopman.Y Essentially one need only assume that a person
be capable of making probability judgments (Event A is more or less
probable than eventB or they are equiprobable) and that his judgments
be self consistent (e.g., if he judgeé\ more probable thanB and B more
probable than C he should judgeA more probable than C). One can even
establish numerical values by the use of a \standard gauge,for example
a roulette wheel, and thus relate the subjective and the fregency
probabilities. In the second place, on progmatic grounds oa can hardly
ignore the subjective applications, since almost all of oureveryday
decisions are based on this sort of probability judgment. Cyptographic
work involves both types of appliantions. In the use of freqency tables,
signi cance tests etc., the cryptanalyst is following the frequency approach,
In the \intuitive" methods of cryptanalysis (probable word s etc.) the degree
of belief approach is more in evidence.

We may remark that a single operation on a language
which is reversible forms a degenerate type of secrecy systeunder
our de nition|a system with only one key of unit probability. ~ Such a
system has no secrecy|the cryptanalyst nds the message by applying
the inverse of this transformation, the only one in the systen, to the
intercepted cryptogram. The decipherer and cryptanalyst & this case

Y B. O. Koopman, \The Axioms and Algebra of Intuitive Probabilit y."
Annals of Mathematics, v.41, no.2, 1940, p.269.
\Intuitive Probabilities and Sequences," v.42. no.1, 1941, p.169



-29- CONHBENTHA—

possess the same information. In general, the only di erene be-
tween the decipherer's knowledge and the enemy cryptanaly's
knowledge is that the decipherer knows the particular key baéng
used, while the cryptanalyst only knows thea priori probabilities
of the various keys in the set. The process of deciphering ishat

of applying the inverse of the particular transformation used in
enciphering to the cryptogram. The process of cryptanalys is that
of attempting to determine the message (or the particular

key) given only the cryptogram and the a priori probabilities of
various keys and messages.

A system will be called \closed" if any possible
cryptogram can be deciphered with any possible key. This mezs
that the inverse transformations T, * are all de ned for every
element in the cryptogram space.

We shall use the notationjM j for the \size" of the
message space:
X
M| P(M)logP (M)

where P (M) is the probability of messageM and th e sum is over
all messages of jusiN letters. Thus jM j is a function of N, and
measures the amount of \choice" in the selection of arN letter
message. For largeN, jM | is approximately RN . Similarly jKj is
the size of the key space

X
jKj= P(K)logP(K)
the sum being over all keys.

9. Representation of Systems

A secrecy system can be represented in various ways.
One which is convenient for illustrative purposes is a line ¢hgram, as
in Figs. 7, 10, 11. The possible messages are represented hyimis at
the left and the possible cryptograms by points at the right. If a certain
key, say key 1, transforms messaghl, into cryptogram E4 then M, and
E4 are connected by a line labeled 1, etc. From each possible nsege
there must be exactly one line emerging for each di erent key

A second representation is by means of a rectangular
array. This may be done in three di erent ways. For the closed
system of Fig. 7, the three arrays are as follows:
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K E K
M 1 2 3 M Ei1 Ex Esz Eas E 1 2 3

M: |E1 Es Ez My |1 3 2 E1 M1 Mz Mg
Mo, | Es Ei1 E4 Mo | 2 1 3 E, My Mg My
M3z | Es Esz E; Mz |3 2 1 Es M2 M3z My
M4 E, E, Es M4 1,2 3 Es M3z M; M,

From the rst of these messageM, with key 3 yields cryptogram E,.

From the secondM ; is transformed into E, by key. 3. No key transforms
M1 into E3 and either 1 or 2 transformsM4 into E,. From the third E3

is deciphered by key 2 to giveM ;. All of these arrays and the line diagram
contain equivalent information|from any one the others can b e derived.

These arrays and diagrams only describe the set of trans-
formation in the system. To specify the system the probabilties of
various keys must also be given. This may be done by merely tieg
the keys with the associated probabilities. Similarly the message source
is not completely speci ed until the probabilities of the various messages
are given.

A more common way of describing a system is to describe
the set of transformations by telling what operations one peforms on the
message for an arbitrary key to obtain the cryptogram. Simikrly one
de nes implicitly the probabilities for various keys by describing how a
key is chosen, or what we know of the enemy's habits of key choé. The
probabilities for messages are implicitly determined by sating our a
priori knowledge of the enemy's language habits, the tactical sitation
(which will in uence the probable content of the message) awnl any special
information we may have regarding the cryptogram.

10. Notation

The following notation will generally be followed.
M = the message, alsaM;, M;, particular messages
K =the key E = the enciphered message or cryptogram
m = the set of all messages with associated probabilities, a mbability
space
k = the set of keys with associated probabilities, also a probhility space
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g = the cryptogram space, also a probability space, since the babilities
in u and g induce probabilities in g, for each cryptogram.
m; = the ith letter of the message
g = the ith letter of the cryptogram
ki = the ith letter of the key when it can be so described

Generally P stands for a probability. Conditional probabilities
are indicated with subscripts. Thus
P (M) = probability of message M
P (E) = probability of cryptogram E
P(K) = probability of key K
Pm (E) = conditional probability of E if messageM is chosen
Pe (M) = conditional probability of M if cryptogram E is intercepted,
i.e. the a posteriori probability of M if E is observed.
Q = equivocation, a concept to be de ned precisely later, whid
measures the uncertainty of some knowledge de ned only by
probabilities. We also have conditional equivocations, thus
Qm (K) is the equivocation of the key knowing the message.
iKj= = P(K)logP(K) the size of the key space
Mj= P P(M)log P (M) the size of the message space
JEj = P(E)log P(E) the size of the cryptogram space
m = number of di erent keys
N = number of intercepted letters
R, = maximum information rate for a language
R = mean rate
D = R, R =redundancy of a language
T, R, S, etc, = secrecy systems
Ti, Ri, Sj, etc. = particular transformation of these systems

11. Some Examples of Secrecy Systems

In this section a number of examples of ciphers will be
given. These will often be referred to in the remainder of thepaper for
illustrative purposes.

1. Simple Substitution Cipher.

In this cipher each letter of the message is replaced by a
xed substitute, usually also a letter. Thus the message
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M =m; my, mzmy

becomes

E=zeeee
= f(my) f (mz) f (m3) f (my)

where the function f (m) is function with an inverse. The key is a
permutation of the alphabet (when the substitutes are letters) e.g.
XGUACDTBFHRSLMQVYZWIEJOKNP

The rst letter X is the substitute for A, G is the substitute for B, etc.

2. Transposition (Fixed Period d).

The message is divided into groups of lengthd and a
permutation applied to the rst group, the same permutation to the
second group, etc. The permutation is the key and can be repeznted
by a permutation of the rst d integers. Thus ford =5 we might have
2 3 15 4 as the permutation. This means thatm; m, m3 m4 ms Mg
m7 Mg Mg Myg::: becomes

M2 M3 M3 Ms Mg M7 Mg Mg M1g Mg <15 Sequential
application of two or more transpositions will be called conpound
transposition. If the periods ared;;dy;:::;ds it is clear that the

3. Vigerere, and Variations.

In this cipher the key consists of a series ofl letters. There
are written repeatedly below the message and the two added nuulo 26
(considering the alphabet numbered from A = 0 to Z = 25). Thus
e =m;+ ki (mod 26)

wherek; is of period d in the index i.

For example with the key G A H we obtain

message NOWISTHE...
repeated key GAHGAHGA...
cryptogram TODOSANE...
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The Vigerere of period 1 is called the Caesar cipher. It is aisnple
substitution in which each letter of M is advanced a xed amount in
the alphabet. This amount is the key, which may be any number fom
0 to 25. The so-called Beaufort and Variant Beaufort are simiar to the
Vigerere, and encipher by the equations

e =k m (mod26)

and

e=m; Kk (mod 26)

respectively. The Beaufort of period one is called the revesed Caesar
cipher.

The application of two or more Vigereres in sequences will
be called the compound Vigerere. It has the equation
e=m=k+I[j+:::+5s (mod 26)
wherek;;l;;:::s; in general have di erent periods. The period of
their sum
Ki+ li+ i+ s

as in compound transposition, is the least common multiple 6the
individual periods.

4. Vernam System.

When the Vigerere is used with an unlimited key, never
repeating, we have the Vernam system, with

e =m;+ ki (mod 26)

the k; being chosen at random and independently among 0, 1, ..., 25.
If the key is a meaningful text we have the \running key" cipher.

5. Bazeries Cylinder.

In this mechanical system 25 thick disks are used, each
having a mixed alphabet stamped around the edge. These disksan be
arranged in any order on a spindle, and the particular arrangment
used constitutes the key. With the disks in their proper orde, a

G. S. Vernam, \Cipher Printing Telegraph Systems for Secret Wire
and Radio Telegraphic Communications," Journal Amer. Inst. of Elect
Eng. V. XLV. pp. 109{115, 1926.
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message is enciphered by turning the disks so that the messagppears
on a line parallel to the axis of the spindle. Any other line ofletters may
then be chosen for the cryptogram. To decipher, the cryptogam is
arranged on a line and the decipherer looks for another line tich then
makes sense.

6. Digram, Trigram, and N-gram substitution.

Rather than substitute for letters one can substitute for
digrams, trigrams, etc. General digram substitution requires a key
consisting of a permutation of the 26 digrams. It can be represented
by a table in which the row corresponds to the rst letter of th e digram
and the column to the second letter, entries in the table beig the sub-
stitutes (usually also digrams).

7. Interrupted Key Vigerere.

The Vigerere and its variations can be used with an interrupted
key. The sequence of key letters is started again at irreguldy spaced
points. Thus, if the entire key sequence is X P GHF TR S, one can
interrupt irregularly to get

XPGHFTXPGXPGHFTRXPXPG

The points of interruption can be determined in various ways (1).
Whenever a certain letter occurs in the clear. (2). Whenevera certain
letter occurs in the cryptogram. (3) An interrupting letter , say J, can
be reserved as a signal and the encipherer interrupts the kegt his
discretion. (4). No signal is used and the decipherer locatethe
interruptions by the meaningless text in the decipherment. In place of
starting the key again at each interruption one can omit letters of it or
reverse the direction of progression. There are many varians and
combinations of these methods.

8. Single Mixed Alphabet Vigerere.
This is a simple substitution followed by a Vigerere.

e = f(m)+k
=f Yo k)

The \inverse" of this system is a Vigerere followed by simple
substitution

m

& = g(m; + kj)
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m =g '(e) Kk
9. Vigerere with Progressing Key.

The period of a Vigerere can be expanded by adding a xed
number t to the key at each appearance|thus the n™ group is enciphered
by the equation

eg=m;+k +nt
Also this can be varied by addingt and s alternately to the key, etc.

10. Matrix System.

One method of n-gram substitution is to operate on successive
n-grams with a matrix having an inverse. The letters are assurad
numbered from 0 to 25, making them elements of an algebraic mg. From
the n-gram my; my;:::m, of message, the matrixa; gives ann-gram
of cryptogram

The matrix a; is the key, and deciphering is performed with the in-
verse matrix. The inverse matrix will exist if and only if the determinant
j&; j has an inverse element in the ring.

11. The Playfair Cipher.

This is a particular type of digram substitution governed by a
mixed 25 letter alphabet written in a5 5 square. (The letter J is often
dropped in cryptographic work|it is very infrequent, and whe n it occurs
can be replaced by I.) Suppose the key square is as shown below

L Z Q C P
A G N O U
R DM I F
K'Y HV S
X B T E W

See L.S. Hill, \Cryptography in an Algebraic Alphabet,"
American Math. Monthly, v. 36, No. 6, 1, 1929, pp. 306-312, Also
\Concerning Certain Linear Transformation Apparatus of Cryptog raphy,"
v. 38, No. 3, 1931, pp. 135-154.
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The substitute for a digram AC, for example, is the pair of letters at

the other corners of the rectangle de ned byA and C, i.e., LO, the L
taken rst since it is above A. If the digram letters are on a

horizontal line as RI, one uses the letters to their right DF ; RF becomes
DR. If the letters are on a vertical line, the letters below them are

used. ThusP S becomesUW. If the letters are the same nulls may be
used to separate them or one may be omitted, etc.

12. Multiple Mixed Alphabet Substitution.

In this cipher there are a set ofd simple substitutions which
are used in sequence. If the period is four

mi; M2 M3 Mg Ms Mg

becomes
f1(my) fa(myz) f3(mz) f4(my) f1(ms) f2(me)
13. Autokey Cipher.

A Vigerere type system in which either the message itself or
the resulting cryptogram is used for the \key" is called an auokey
cipher. The encipherment is started with a \priming key" (wh ich is the
entire key in our sense) and continued with the message or cptogram
displaced by the length of the priming key as indicated belowwith the
priming key COMET. The message used as \key".

MESSAGE SENDSUPPLIES...
KEY COMETSENDSUP...
CRYPTOGRAM USZHLMTCOAYH...

The cryptogram used as \key",

MESSAGE SENDSUPPLIES...
KEY COMETUSZHLOH...
CRYPTOGRAM USZHLOHOSTS...
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14. Fractional Ciphers.

In these, each letter is rst enciphered into two or more
letters or numbers and these symbols are somehow mixed (e.@y
transposition). The result may then be retranslated into the original
alphabet. Thus using a mixed 25 letter alphabet for the key wemay
translate letters into two digit quinary numbers by the tabl e

01 2 3 4
OL ZQZCUP
1 AG N O U
2 R D M I F
3 K Y HV S
4 X B T E W

Thus B becomes 41. After the resulting series of numbers is transged
in some way they are taken in pairs and translated back into l¢ters.

15. Codes.

In codes words (or sometimes syllables) are replaced by
substitute letter groups. Sometimes a cipher of one kind or aother is
applied to the result.

12. Valuations of Secrecy Systems

There are a number of di erent criteria that should be applied
in estimating the value of a proposed secrecy system. The merimportant
of these are:

1. Amount of Secrecy.

There are some systems that are perfect|the enemy is no
better o after intercepting any amount of material than bef ore. Other
systems, although giving him some information, do not yielda unique
\solution" to intercepted cryptograms. Among the uniquely solvable
systems, there are wide variations in the amount of labor regired to
e ect this solution, and the amount of material that must be i ntercepted
to make the solution unique.
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2. Size of Key.

The key must be transmitted by non-interceptible means
from transmitting to receiving ends. Sometimes it must be menorized.
It is desirable then to have the key as small as possible.

3. Complexity of Enciphering and Deciphering Operations.

These should, of course, be as simple as possible. If they
are done manually, complexity leads to loss of time, errorsetc. If
done mechanically, complexity leads to large expensive mamnes.

4. Propagation of Errors.

In certain types of secrecy systems an error of one letter
in enciphering or transmission leads to a large amount of eor in the
deciphered text. The errors are spread out by the decipherig operation,
causing the loss of much information and frequent need for fgetition of
the cryptogram. It is naturally desirable to minimize this error
expansion.

5. Expansion of Message.

In some types of secrecy systems the size of the message
is increased by the enciphering process. This undesirableeet may
be seen in systems where one attempts to swamp out messagetistcs
by the addition of many nulls, or where multiple substitutes are used. It
also occurs in many \concealment” types of systems (which a¥ not
usually secrecy systems in the sense of our de nition).

13. Equivalence Classes in the Key Space

It may happen that in a ciphering system two or more di erent
keys, say keys 1, 2, and 7, are equivalent. By this we mean thebr
every M

TJ_M = T2M = T7M

These keys will not be considered as distinct but will be threvn into an
equivalence class. It is clear that the cryptanalyst can neer determine
which particular one of these was used but only (at best) the tass. The
probability for the class is of course the sum of the probabities of the
di erent keys in the class.
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As an example, in the Playfair cipher with the system
given above, the following are equivalent key squares.

G H X P Y E C | Z F
Z F E C | N R D L O
L O N R D vV S Q T A
T A V S Q w B M K U
K U w B M X P Y G H

We can think of the possible equivalence classes in this cass
arrangements of a 25 letter alphabet on a 5 5 square drawn on an
oriented torus. The number of di erent keys is not 25! but 25!=52
=24]

When we say that two secrecy systems are the same we
mean that they consist of the same set of transformationsT;,
with the same message and cryptogram space (range and domgiand
the same probabilities for the di erent keys (after all identical trans-
formations are put in the same equivalence class).

14. The Algebra of Secrecy Systems

If we have two secrecy system3 and R we can often
combine them in various ways to form a new secrecy syster8. If T and
R have the same domain (message space) we may form a kind of \vghited
sum,"

S=pT+gR

wherep+ g=1. This operation consists of rst making a preliminary
choice with probabilities p and g determining which of T and R is used.
This choice is part of the key ofS. After this is determined T or R is
used as originally de ned. The total key of S must specify which of T
and R is used and which key ofT (or R) is used.
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More generally we can form the sum of a number of
systems. X
S=pT+pR+ +pyrU pi=1

We note that any system T can be written as a sum of xed operations

T= plTl + p2T2 + + Pm Tm

T; being a de nite enciphering operation of T corresponding to key
choicei, which has probability p;.

A second way of combining two secrecy systems is by
taking the \product", shown schematically in Fig. 8. Suppose T and
R are two systems and the domain (language space) df can be
identi ed with the range (cryptogram space) of R. Then we can apply
rst R to our language and thenT to the result of this enciphering
process. This gives a resultant operatiorS which we write as a
product

S=TR

The key for S consists of both keys ofT and R which are assumed
chosen according to their original probabilities and indegndently.
Thus if the m keys of T are chosen with probabilities

P1 P2 Pm

and the n keys of R have probabilities

PP P

then S hasmn keys (at most; there may and often will be equivalence
classes) with probabilities p; pJQ. This type of product encipherment

is often used; for example one follows a substitution by a trasposition
or a transposition by a Vigerere, or applies a code to the tex and en-

ciphers the result by substitution, transposition, fracti onation, etc.

A more special type of product may be de ned in case both
T and R have keys of the same size which may be put in one-to-one
correspondence with the same probabilities for corresporidg keys.
This may be called the \inner product", in contrast with the a bove
which may be more completely described as an \outer product”
(these names are derived from a rough analogy with the concép of
tensor analysis). In the inner product, written

S=T R
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and indicated schematically in Fig. 9, the same key (or corrgponding
keys) are used for bothT and R chosen with the common probability.

For example one may construct a transposition cipher
whose key is a permutation of the alphabet, each permutatiorbeing
equally likely, and apply rst this and then a substitution b ased on the
same permutation. One also sees this situation in certain gemetrical
types of tranposition ciphers where the text is written into a square and
a permutation based on a key word applied rst to the columns axd then to
the rows of the square.

It may be noted that multiplication (either kind) is not in
general commutative, (we do not always haveRS = SR) although in
special cases such as substitution and transposition it isSince it
represents an operation it is de nitionally associative. That is R(ST) =
(RS)T = RST. Furthermore we have the laws

p(p°T + R) + qS= pp’T + pgR + S

(weighted associative law for addition)

T(pR+ qS) = pTR+ TS
(pR+ q9T = pRT + ST

(right and left hand distributive laws)
and

paT + p2T + psR = (p1 + p2)T + p3R

Finally with regard to this algebraic structure of secrecy
operations, we note that every closed secrecy system has an \inverse"
TO obtained by interchanging the E and M spaces, with key probabilities
the same, and

(TRS)?= SROT°
(pT + qR)°= pT°+ gR°

Note that TTCis not in general the identity (this is the reason we do
not write T 1),

A system whoseM and E spaces can be identi ed, a very
common case as when letter sequences are transformed intdtés
sequences, may be termed endomorphic. An endomorphic systeT
may be raised to a powerT".
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A secrecy systemT whose outer product with itself is
equal to T, i.e. for which

TT=T

will be called idempotent. For example simple substitution trans-
position of period p, Vigerere of period p (all with each key equally
likely) are idempotent.

The set of all endomorphic secrecy systems de ned in a
xed message space constitute an \algebraic variety," thatis, a kind
of algebra, using the operations of addition and multiplicaion. In
fact, the properties of addition and multiplication which w e have dis-
cussed lead to the following result.

Theorem 1: The set of endomorphic ciphers with the same mesga
space and the two combining operations of weighted
addition and outer multiplication form a linear associ-
ative algebra with a unit element, apart from the fact
that the coe cients in a weighted addition must be
non-negative and sum to unity.

It should be emphasized that these combining operations of
addition and multiplication apply to secrecy systems as a wiole. The
product of two systems TR should not be confused with the product of
the transformations in the systemsT;R;, which also appears often
in this work. The former TR is a secrecy system, i.e. a set of trans-
formations with associated probabilities; the latter is a particular
transformation. Further the sum of two systems pR + qT is a system|
the sum of two transformations is not de ned. The systemsT and R
may commute without the individual T; and R; commuting , e.g. ifR
is a Beaufort system of a given period, all keys equally likei

RiR; 6 RjR

in general, but of courseRR does not depend on its order; actually

RR =V

the Vigerere of the same period with random key. On the otherhand,
if the individual T; and R; of two systemsT and R commute, then the
systems commute.

It is rather surprising to nd an algebraic variety with
as much structure as a linear associative algebra in which
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the elements have the complexity of ciphers. In Hilbert spae theory,
for example, one has a linear associative algebra, but the ehents of
the algebra are transformations. Here the elements areets of
transformations with a probability space associated with the trans-
formation parameter.

These combining operations give us ways of constructing
many new types of secrecy systems from certain ones, such dset
examples given. We may also use them to describe the situatio
facing a cryptanalyst when attempting to solve a cryptogram of un-
known type. He is, in fact, solving a secrecy system of the typ

X
T=pA+pB+ +pS+pX p=1

their a priori probabilities in this situation, and p°X corresponds
to the possibility of a completely new unknown type of cipher

In weighted addition the key size of the result is given by

o P P
Kj = ipipllogp’  qf%g

PiK1j+ qK2j (plogp+ glogq)

piK1j + giK2j + jK3]

i.e. the weighted mean of the two keys plus the size of the; g key.
This is only in case there are no equivalences; if there are will
always be less.

For the outer product the key size is
iKj J Kaj+ K]

with equality only when there are no equivalences. In the iner
product

iKi ) Kaj = Ko

with equality under the same condition.
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15. Pure and Mixed Ciphers

Certain types of ciphers, such as the simple substitution,
the transposition of a given period, the Vigerere of a givenperiod, the
mixed alphabet Vigerere, etc. (all with each key equally likely) have
a certain homogeneity with respect to key. Whatever the keythe
enciphering, deciphering and decrypting processes are esgially
the same. This may be contrasted with the cipher

pS+ qT

where S is a simple substitution and T a transposition of a given period.
In this case the entire system changes for enciphering, dgxtiering

and decryptment, depending on whether the substitution or transposition
was used.

The cause of the homogeneity in certain ciphers stems
from the group property|we notice that in the above examples o f
homogeneous ciphers the product of any two transformationsn the
setT;T; is equal to a third transformation Ty in the set, while T;
S; does not equal any transformation in the cipher

pS+ qT
which contains only substitutions and transpositions, no poducts.

We might de ne a \pure" cipher, then, as one whoseT;
formed a group. This, however, would be too restrictive sine it
requires that the E space be the same as th#®l space, i.e. that the
system be endomorphic. The fractional transposition is as bmogeneous
as the ordinary transposition without being endomorphic. The proper
de nition is the following. A cipher T is pure if for every T;; T,
Tk, there is aTs such that

TT Y T=Ts

and every key is equally likely. Otherwise the cipher is mixed. The
systems of Fig. 7 are mixed. Fig. 10 is pure if all keys are eqlg
likely.

Theorem 2: In a pure cipher the operationsT, 1TJ- which transform
the message space into itself form a group whose order s, the
number of di erent keys.
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1 1 -
T kT Ty =1
so that each element has an inverse, also the associative lag/true
since these are operations, and the group property followsdm

T

T = TOIT T = T
using our assumption that T, *T; = T 1T for somes.

The operation T, 1TJ- means, of course, enciphering the
message with keyj and then deciphering with key i which brings us
back to the message space. If is endomorphic, i.e theT; themselves
transform the space \ into itself (as is the case with most ciphers,
where both the message space and the cryptogram space congi$
sequences of letters), and thd; are a group and equally likely, thenT
is pure, since

TT 'M=TT, =T,

Theorem 3: The outer product of two pure ciphers which commué
is pure.

For if T and R commute T;R; = R Ty, for every i, j
with suitable *, m, and

TiR; (TkR) 1 TiRjR. T, TRy

RuR, IRy T, T, 1T,

= Rth

The commutation condition is not necessary, however, for tle product
to be a pure cipher.

A system with only one key, i.e. a single de nite operation
T1, is pure since the only choice of indices is
T M=T

Thus the expansion of a general cipher into a sum of such simel
transformations also exhibits it as a sum of pure ciphers.
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An examination of the example of a pure cipher shown in
Fig. 5 discloses certain properties. The messages fall intoertain
subsets which we will call residue classes, and the possitteyptograms
are divided into corresponding residue classes. There is &ast one
line from each message in a class to each cryptogram in the
corresponding class, and no line between classes which dotno
correspond. The number of messages in a class is a divisor diet total
number of keys. The number of lines \in parallel" from a messae M
to a cryptogram in the corresponding class is equal to the nuiber of keys
divided by the number of messages in the class containing themessage
(or cryptogram). It is shown in the appendix that these hold in general
for pure ciphers. Summarized in a more formal statement we hae

Theorem 4: In a pure system the messages can be divided into atsof

corresponding set of residue class&3;; C,;::: Cs with the
following properties

(1) The message residue classes are mutually
exclusive and collectively contain all

possible messages. Similarly for the
cryptogram residue classes.

(2) Enciphering any message inC; with any k
produces a cryptogram inC2. Deciphering

any cryptogram in C°2with any key leads to

a message irC;.

(3) The number of messages irC?, say' , is
equal to the number of cryptograms in C?

and is a divisor of k the number of keys.

(4) Each message irC; can be enciphered into
each cryptogram in C? by exactly IL

di erent keys. Conversely for decipherment.

The importance of the concept of a pure cipher (and the
reason for the name) lies in the fact that for them all keys are
essentially the same. Whatever key is used for a particular mssage,
the a posteriori probabilities of all messages are identical. To see
this, note that two di erent keys applied to the same messagelead to
two cryptograms in the same residue class, sag;. The two crypt-
ograms therefore could each be deciphered b;‘ﬁ keys into each
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message inC; and into no other possible messages. All keys being
equally likely the a posteriori probabilities of various messages are
thus

(M)Pu (E) _ P(M)
PuPu(E)  P(C)

whereM is in C;, E is in C2and the sum is over all messages ;.

If E and M are not in corresponding residue classeBg (M) = 0.
Similarly it can be shown that the a posteriori probabilities of the

di erent keys are the same in value but these values are ass@ted

with di erent keys when a di erent key is used. The same set of
values of Pg (K) have undergone a permutation among the keys. Thus
we have the result

PE(M): .B

Theorem 5: In a pure system thea posteriori probabilities of
various message®e (M) are independent of the key
that is chosen. Thea posteriori probabilities of the
keys Pg (K) are the same in value but undergo a
permutation with a di erent key choice.

Roughly we may say that any key choice leads to the
same cryptanalytic problem in a pure cipher. Since the di erent
keys all result in cryptograms in the same residue class thisneans
that all cryptograms in the same residue class are cryptanattically
equivalent|they lead to the same a posteriori probabilities of
messages and, apart from a permutation, the same probabili¢s of
keys.

As an example of this, simple substitution with all keys
equally likely is a pure cipher. The residue class correspaling to a
given cryptogram E is the set of all cryptograms that may be obtained
from E operations T; TkE. In this caseT; T, ! is itself a substitution
and hence any substitution onE gives another member of the same
residue class. Thus if the cryptogram is

E = XCPPGCFQ

then

E:1 = RDHHGDSN
E, = ABCCDBEF
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etc. are in the same residue class. It is obvious in this casdat

these cryptograms are essentially equivalent. All that is é importance
in a simple substitution with random key is the pattern of letter
repetitions, the actual letters being dummy variables. Indeed we might
dispense with them entirely indicating the pattern of repetitions in E

as follows:

This notation describes the residue class but eliminates &information
as to the speci c member of the class. Thus it leaves precisglthat
information which is cryptanalytically pertinent. This is related to one
method of attacking simple substitution ciphers|the method of pattern
words.

In the Caesar type cipher only the rst di erence mod 26
of the cryptogram are signi cant. Two cryptograms with the same g
are in the same residue class. One breaks this cipher by thensple
process of writing down the 26 members of the message residakass
and picking out the one which makes sense.

The Vigerere of period d with random key is another
example of a pure cipher. Here the message residue class detssof
all sequences with the same rst di erences for letters sepated by
distance d as the cryptogram. For d = 3 the residue class is de ned by
m; Mg=€ €
m; Ms=6 6

m3 Mg = €3

&

mg M7=6 €&

Suggested by a notation used by Quine in Symbolic Logic.
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whereE = e;;ey;::: is the cryptogram and my; my;:::isany M
in the corresponding residue class.

In the transposition cipher of period d with random key,
the residue class consists of all arrangements of thg in which no g
is moved out of its block of lengthd, and any two g at a distanced
remain at this distance. This is used in breaking these ciphe as
follows. The cryptogram is written in successive blocks ofdngth d,
one under another as belowd = 5):

€1 € € €& 6
€ € € € €
€11 €

The columns are then cut apart and rearranged to make sense. Wén
the columns are cut apart, the only information remaining is the residue
class of the cryptogram.

Theorem 6: If T is pure then T; Tj T = T whereT, T
are any two transformations of T. Conversely if this is true for any
T;iT; in asystemT then T is pure.

The rst part of this theorem is obvious from the de nition
of a pure system. To prove the second part we note rst that if
TiT; 'T = T then TiT; 'Ts is a transformation of T.
It rerBains to show that all keys are equiprobable. We have
T= 4psTs and X X
PsTi Tj 1Ts = PsTs

S S

the term in the left hand sum with s = j yields p; T;. The only term in
T; on the right is p; T;. Since all coe cients are non negative it follows
that

B P
The same argument holds withi and j interchanged and consequently
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Pi = Pi

and T is pure. Thus the condition that T;T; 1T = T might be used as
an alternative de nition of a pure system.

The property of purity in a system is connected with
idempotence. Thus consider the systen® = TT%where T is pure.
We have

TT T, ' =TT AT T, P T

so that the transformations of S? are the same as those 08, and since

both S and S? are pure we have
S=g?

Theorem 7: If T is pure S = TT%is pure andS? = S.

An endomorphic systemT which satis es the condition
TiT; = Ts (but not necessarily with all key probabilities equal) can
be shown to approach a pure cipher on raising to a high power,
namely the one with the same transformations, but with all
probabilities equalized. In fact the probabilities for T"*! are derived
from those for T" by a Marko process of a special type due to the
group property. This special type always approaches the lirit of
equalized probabilities. This same argument applies moreenerally
We have

Theorem 8: Let T be any endomorphic cipher. IfT" approaches
any limit at all, which will necessarily occur if all
the transformations of T" lie in a nite set (no
matter how large n) and the transformations of T
include the identity then this limit will be a pure cipher.

As an example consider the cipher

R=pT+gS
where T is transposition with random key and S substitution with random
key. We have
s?=5s
T2=T

ST=TS
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and hence any product ofT's and S'ssuchasT ST T T S Sreduces
to ST. Thus

R"=p"T+qg'S+(1 p" q")ST

Asn!1 the rsttwo terms approach zero and
lim R" = ST
nll

The concepts of pure and mixed languages and pure and
mixed ciphers have an application in practical cryptanalyss, if we
interpret them somewhat loosely. When a cryptographer stats work
on a cryptogram, his rst job is to determine the original lan guage.
Approximately then he is determining the pure component of the
general language space

L= plLl+ p2|-2+ + ann

where L, say is English,L, German, etc. Of course these are not pure
but the di erent components of them are fairly close togethe in
statistical structure.

The second thing a cryptographer does is to determine the
\type" of cipher that was used|usually this is about the same a s
nding the pure component in the general cipher system

R=p1S+ pT + p3V + i
where S say is simple substitution, T is transposition, etc. A Vigerere
V of unknown period is not a pure cipher but the decomposition
V = piVi+ peVo + pgVs + i

whereV; is of periodi, is into pure components (if all keys are equally
likely for any period). In solving a Vigerere the rst probl em is to
determine the period. The same is true in transposition.

The reason for this initial isolation of pure or nearly pure
language and cipher is that only then can a simple meaningfustatistical
analysis be carried out.

16. Involutory Systems

If every transformation in a system T is its own inverse,
ie., if

TiTi =1
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for every i, the system will be called involutory. Such systems are
important practically since the enciphering and decipherng operations
are then identical. This leads to simpli ed instructions to cryptographic
clerks in manual operation, or in mechanical cases the sameaunhine
with the same key setting may be used for both operations.

Examples: In simple substitution we may limit our transform ations to
those in which when letter is the substitute for ', ' is the
substitute for . Another example is the Beaufort cipher.

If T is involutory, so is the system whose operations are

ST *

since
STS Y(STiS H= TS 'STis = |

17. Similar and Weakly Similar Systems

Two secrecy systemd/ and S will be said to be similar if
there exists a transformation A having an inverseA ! such that

R = AS

This means that enciphering with R is the same as enciphering withS

and then operating on the result with the transformation A. | f we write

R StomeanR is similar to S then it is clear that R S implies S R.
AlsoR SandS T imply R T and nally R R. These are summarized
in mathematical terminology by saying that similarity is an equivalence
relation.

The cryptographic signi cance of similarity is thatif R S
then R and S are equivalent from the cryptanalytic point of view. Indeed
if a cryptanalyst intercepts a cryptogram in system S he can transform
it to one in system R by merely applying the transformation A to it. A
cryptogram in system R is transformed to one inS by applying A 1. If
R and S are applied to the same language or message space, there is a
one-to-one correspondence between the resulting cryptogms.
Corresponding cryptograms give the same distribution ofa posteriori
probabilities for all messages.
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If one has a method of breaking the systenR then any
system S similar to R can be broken by reducing toR through application
of the operation A. This is a device that is frequently used in practical
cryptanalysis.

Examples: As a trivial example, simple substitution where te
substitutes are not letters but arbitrary symbols is
similar to simple substitution using letter substitutes.
A second example is the Caesar and the reversed
Caesar type ciphers. The latter is sometimes broken by
rst transforming into a Caesar type. The Vigerere,
Beaufort and Variant Beaufort are all similar, when the
key is random. The \autokey" cipher primed, with the
key K 1K ,:::K 4 is similar to a Vigerere type with the
key alternately added and subtracted (mod 26). The trans-
formation A in this case is that of \deciphering" the auto-
key with a series ofd A's for the priming key.

Two systemsR and S are weakly similar if there exist
two transformations A and B having inverseA ' and B *
with
R = ASB

This means that systemR is the same as applying rstB
to the language, thenS, and nally A. This relation is also an equivalence
relation.

Finding a method of solution for systemR with language L is
equivalent to nding a solution for S with language B L.

We may note that if R is pure and S is weakly similar to R
then S is pure. This follows from
RiR, 'Ry = R:
Ri = ASiB
1_ 1 1 1
R, "=B °§ A

P
=~
1]

AS¢B

where we assume corresponding transformations iR and S to have the
same subscripts. Hence
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RiR]- ! = ASiSj SkB =R
SS 'Sk = ARB!
= S

and S is therefore pure.
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PART I

Theoretical Secrecy

Introduction

We now consider problems connected with the \theoretical
secrecy" of a system. How immune is a system to cryptanalysis
when the cryptanalyst has unlimited time and manpower availble
for the analysis of cryptograms? Does a cryptogranhavea unique
solution (even though it may require an impractical amount of work
to nd it) and if not how many reasonable solutions does it have? How
much text in a given system must be intercepted before the sattion be-
comes unique? Are there systems which never become unique solution
no matter how much enciphered text is intercepted? Are theresystems
for which no information whatever is given to the enemy no mater how
much text is intercepted?

18. Perfect Secrecy

Let us suppose the possible messages are nite in numbéd 4, ...,
Mp and havea priori probabilities P(M31);:::; P(My), and that these
are enciphered into the possible cryptogram<e:::E, by

E=TM

The cryptanalyst intercepts a particular E and can then calculate
the a posteriori probabilities for the various messagesPg (M). It is
natural to de ne perfect secrecyby the condition that for all E, the a
posteriori probabilities are equal to the a priori probabilities independently
of the values of these. In this case, intercepting the messaghas given
the cryptanalyst no information. ?Any action of his which depends on the
information contained in the cryptogram cannot be altered, for all of his
probabilities as to what the cryptogram contains remain uncanged. On
the other hand, if the condition is not satis ed there will exist situations
in which the enemy has certaina priori probabilities, and certain key and
messages are chosen where the enemy's probabilities do clgan This in
turn may a ect his actions and thus perfect secrecy has not ben obtained.

Z A purist might object that the enemy has obtained a bit of informatio n
in that he knows a message was sent. This may be answered by having
among the messages a \blank" corresponding to \no message." If no
message is originated the blank is enciphered and sent as a cryptogram.
Then even this modicum of remaining information is eliminated.
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Hence the de nition given is necessarily required by our idas of what perfect
secrecy should mean.

A necessary and su cient condition for perfect secrecy can le
found as follows. We have by Bayes' theorem

P(M)Pwm (E)
P(E)
and this must equal P (M) for perfect secrecy. Hence eitheP (M) = 0,

a solution that must be excluded since we demand the equalityndependent
of the values of P(M), or

Pe(M) =

Pv (E)= P(E)
for every M and E. Conversely if Py, (E)=P(E) then

Pe(M)= P(M)

and we have perfect secrecy. Thus we have the result:

Theorem 9: A necessary and su cient condition for perfect
secrecy is that

Pu (E) = P(E)
for all M and E. That is Py (E) must be independent ofM .

The probability of all keys that transform M; into a given cryptogram
E is equal to that of all keys transforming M; into the sameE.

Now there must be as manyE's as there areM 's, since xing
i, T; gives a one-to-one correspondence between all thé's and some
of the E's. For perfect secrecyPy (E) = P(E) 6 0 for any of these E's
and any M. Hence there is at least one key transforming anyM into any
of the E's. But all the keys from a xed M to dierent E's must be
di erent, and therefore the number of di erent keys is at least as great
as the number ofM's. It is possible to obtain perfect secrecy with no
more, as one shows by the following example. Let thé1; be numbered
1 to n and the E; the same, and usingn keys let

TiMj = Es

wheres=1i j (mod n). In this case we see thatPg (M) = % = P(E) and

we have perfect secrecy. An example is shown in Fig 11 with = 5.



-57- CONHBENTHA—

These perfect systems in which the number of cryptograms,
the number of messages, and the number of keys are all equalear
characterized by the properties that (1) eachM is connected to eachE
by exactly one line, (2) all keys are equally likely. Thus thethree matrix
representations of the system are \latin squares".

We have then concealed completely an amount of information
at most log n with a size of keylog n. This is the rst example of a
general principle which we will often see, that there is a linit to what
can obtain with a given key size|the amount of uncertainty we ¢ an intro-
duce into the solution of the cryptogram cannot be greater than the key
size. Here we have concealed all the information but the keyize is as
large as the message space.

We now consider the case wher@M j is in nite; in fact suppose
the message generated as an unending sequence of letters biylarko
process. The maximum rate of this source iRRp. It is clear from our
results above that no nite key will give perfect secrecy. Wesuppose
then that the key source generates key also in the same mannere. as
an in nite sequence of symbols with amean rate Rx . Suppose that only
a certain length of key Lk is needed to encipher and decipher a length y
of message.

Theorem 10: For perfect secrecy (when the priori proba-
bilities of various messages can be anything),
for large L

RoLm Rk Lk

and the rate (Rx + ") is asymptotically
su cient.

This may be proved by the same method (essentially) as the
nite case. This case is realized by the Vernam system.

These results have been deduced on the basis of unknown or
arbitrary a priori probabilities for the messages. The key required for
perfect secrecy depends then on the total number of possiblmessages,
or on the maximum rate Rpo of the message source.

One would suspect that if the message space has xed known
statistics, so that it has a de nite mean rate R of generating information,
then the amount of key needed could be reduced in an averagerse in
just this ratio %, and this is indeed true. In fact the message can be
passed through a transducer which transforms it into a norm&form and
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reduces the expected length in just this ratio, and then a Venam system
may be applied to the result. Evidently the amount of key usedper

letter of message is statistically reduced by a factor% and in this case
the key source and information source are just matched|an alternative of
key conceals an alternative of information. It is easily see also, by the
methods used in the \Information" paper that this is the best that can be
done.

Theorem 11: Perfect secrecy (omitting the condition of
independence ofa priori probabilities) for
a source with xed statistics and a rate
R of generating information can be achieved
with a key source which generates at the
rate (R + ")t—“KA whereLy and Lk are message
and key lengths which correspond. A rate
less thanR 2 is insu cient.

Perfect secrecy systems have a place in the practical pictef
they may be used either where the greatest importance is attehed to
complete secrecy|e.g. correspondence between the highestlels of
command, or in cases where the number of possible messagesiisall.
Thus, to take an extreme example, of only two messages \yes"rdno"
were anticipated a perfect system would be in order, with pehaps the
transformation table.

The disadvantage of perfect systems for large correspondea
systems is, of course, the equivalent amount of key that musbe sent. In
succeeding sections we consider what can be achieved with alter key
size, in particular with nite keys.

19. Equivocation

Let us suppose that a simple substitution cipher has been uske
on English text and that we intercept a certain amount, N letters, of the
enciphered text. For N fairly large, more than say 50 letters, there is
nearly always a unique solution to the cipher; i.e. a single god English
sequence which transforms into the intercepted material bya simple
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substitution. With a smaller N, however, the chance of more than one
solution is greater; with N = 15 there will generally be quite a number of
possible fragments of text that would t, while with N = 8 a good fraction
(of the order of 1/8) of all reasonable English sequences ohat length

are possible, since there is seldom more than one repeatedtés in the 8.
With N =1 any letter is clearly possible and has the same posteriori
probability as its a priori probability. For one letter the system is

perfect.

This happens generally with solvable ciphers. Before any
material is intercepted we can imagine thea priori probabilities attached
to the various possible messages, and also to the various keyAs material
is intercepted, the cryptanalyst calculates thea posteriori probabilities,
and asN increases the probabilities of certain messages increasad
of most, decrease, until nally only one is left, which has a pobability
nearly one, while the total probability of all others is nearly zero.

This calculation can actually be carried out for very simple
systems. Table 1 shows the posteriori probabilities for a Caesar type
cipher applied to English text, with the key chosen at randomfrom the
26 possibilities. To enable the use of standard letter digren and tri-
gram frequency tables the test has been started at a random put (by
opening a book and putting a pencil down at random on the page) The
message selected in this way begins \creases to ..." starninside
the word increases. If the message were to start with the beghing of a
sentence a di erent set of probabilities must be used, corrgponding to
the frequencies of letters, digrams, etc., at the beginningf sentences.

The Caesar with random key is a pure cipher and the parti-
cular key chosen does not a ect thea posteriori probabilities. To de-
termine these we need merely list the possible deciphermestby all
keys and calculate theira priori probabilities. The a posteriori proba-
bilities are these divided by their sum. These possible depherments
are found by the standard process of \running down the alphatet” from
the message and are listed at the left. These form the residuelass for
the message. For one intercepted letter thex posteriori probabilities
are equal to thea priori probabilities for letters and are shown in the
column headedN = 1. For two intercepted letters the probabilities are
those for digram adjusted to sum to unity and these are shownrn the
column N =2,
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Table 1
A Posteriori Probabilities for a Caesar Type Cryptogram

Decipherments N =1 N=2 N=3 N=4 N=5

CREAS 032  .015 111 55 1
DSFBT 036  .068

ETGCU 123 .170

FUHDV 023 .023

GVIEW 016

HWJF X 051  .015

IXKGY 072

JYLHZ .001

KZMIA .005

LANJB 040 072 250 01
MBOKC 020 019  .022 .01
NCPLD 072 .066

ODQME 079  .034

PERNF 023  .085  .438 43
QFSOG .002

RGTPH 060  .013

SHUQI 066  .064  .005
TIVRJ 096 272 .166
UJWSK .030

VKXTL .009

WLYUM 020 .008  .005
XMZVN .002

YNAWO 019  .006

ZOBXP .001

APCYQ 080  .066

BQDZR 016

Q (Digits) = 1.248 999 602  .340 0

Trigram frequencies have also been tabulated and these ard@wvn
in column N = 3. For four and ve letter sequences probabilities were
obtained by multiplication from trigram frequencies since approximately

p(ifk™ ) = p(ijk ) P ()
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Note that at three letters the eld has narrowed down to four
messages of fairly high probability, the others being smalln comparison.
At four there are two possibilities and at ve just one, the correct
decipherment.

In principle this could be carried out with any system but
unless the key is very small the number of possibilities is starge
that the work involved prohibits the actual calculation.

This set of a posteriori probabilities describes how the
cryptanalyst's knowledge of the message and key graduallydcomes more
precise as enciphered material is obtained. This descriptin, however,
is much too involved and di cult to obtain for our purposes. W hat is
desired is a simpli ed description of this approach to uniqueness of the
possible solutions.

We will rst de ne a quantity Q called the \equivocation"
which measures in an average way the uncertainty of the solitn, or
how far it is from unicity. Suppose that a certain cryptogram E of N
letters has been intercepted. The cryptanalyst can in pringple calculate
the a posteriori probabilities by the use of Bayes' theorem. Thus

Pe(M) = P(M) Pu (E)=P(E):

Similarly the probabilities for various keys, after E has been intercepted
are given by

Pe(K) = P(K) P« (E)=P(E):

The equivocation of the message should measure in some way

how spread out these probabilitiesPg (M) are; how far they are from
being concentrated at one message. In line with our generalrimciples
of measuring such dispersion, as in the case of choice, untznty, and
generating information, we de ne the equivocation of the mesage when
E has been intercepted to be

X
QM) = Pe(M) log Pe (M)
M

the summation being over all possible messages. Similarhhé equivo-
cation in key when E is intercepted is given by

X
Q(K) = Pe (K) log Pe (K)
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The same general arguments used to justify our measure of
information rate may be used here, to justify the equivocaton measure.
We note that equivocation zero requires that one message (deey) have
probability one, all others zero. Equivocation is measuredn the same
units as information, i.e. alternatives, digits, etc., acording as the
logarithmic base is 2, 10, etc. In fact, equivocation is almst identical
with information, the di erence being one of point of view. In information
we stress the notion of how much freedom we have in choosing erelement
from a set with certain probabilities|in equivocation we emp hasize the
uncertainty of our knowledge of what was chosen when the pradbilities
have certain values.

Although any one number can hardly be expected to describe
the set Pg (M) perfectly for all purposes, | think the Q de ned here does
as well as any single statistic can. Some of the theorems witidollow
indicate the mathematical \naturalness" of this particula r measure.

The values of equivocation for the Caesar type cryptogram
considered above have been calculated and are given in thestarow of
Table 1. This is the Q for both key and message, the two being equal in
this case.

The de nitions given above involve a particular intercepted
E, and are the equivocations for that intercepted cryptogram We wish,
however, to nd a measure of the equivocation for the system a a whole,
which will describe this progress toward uniqueness all increases in
an average sort of way. To do this we form a weighted average dhe
equivocations for each particular intercepted messag&, weighting in
accordance with the probabilities of getting the E in question. This may
be called the mean equivocation of the system, or where thers no
chance of confusion with the narrower equivocation for a paicular E,
we abbreviate to merely the equivocation. Thus the mean eqwiocation
of message is

X
QM) = P(E) Pe(M) log Pe (M)
M;E
the summation being over allM and all E. Since
P(E) Pe(M)= P(E;M)
the probability of getting both E and M, we can write this as

Pwm (E)
P(E)

X X
QM) = P(M;E) log Pe(M) = P(M;E) log P(M)
Similarly

Pk (E)
P(E)

X
Q(K) = P(K;E) log P(K)
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Either of these mean equivocations is a theoretical measure
of the secrecy value of the system. We say theoretical, sinaven when
the equivocation is zero, which corresponds to no uncertaiy as to the
message, it may require a tremendous amount of labor to locatthe particular
message where the probability is one. It might, for example,
be necessary to try each possibl& in succession until one was found
that transformed the intercepted E into reasonable text in the language.
Thus the system would be practically very good, but theoretcally
solvable. The equivocation may be said to measure the degres
secrecy when the cryptanalyst has unlimited time and energy

The equivocation is, of course, a function ofN, the number of
letters intercepted. The functions Q(K; N ) and Q(M; N ) will be called the
equivocation characteristics of the system.

The following data will be helpful in forming a picture of what
small values of equivocation represent.

An equivocation of .1 alternative would result, if (1) 9 times
in 10 there was no uncertainty as toM, the tenth time two M's were
equally probable, or (2) if every time there were two possibities one
with probability .983, the other with probability .017, or ( 3) if 99 times
in 100 there was no uncertainty, the 100th time 1000 equallyikely
possibilities.

An equivocation of .01 would result (1) if every time there wee
two possibilities one with probability .999, the other with probability
.001, or (2) if 99 times in 100 there is no uncertainty, the otter time two
equally likely possibilities, or (3) if 999 times in 1000 thee is no un-
certainty, the other time 6 or 7 equally likely possibilitie s.

20. Properties of Equivocation

Equivocation may be shown to have a humber of interesting
properties, most of which t into our intuitive picture of ho w such a
quantity should behave. We may rst show, by an example, the ®mewhat
surprising fact, that after a cryptanalyst has intercepted certain special
E's, his equivocation as to key or message may be greater tharefore
he intercepted anything. The intercepted material has inceased his
ignorance of what happened. Suppose there are only two meggsM
and M, with a priori probabilities of p and g, and that a simple substitution
is used according to the following table, the two keysK ;
and K, also having thea priori probabilities p and q.
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Before the interception, the equivocation of both key and mesage
is (plog p+ g log qQ, which is less than one alternative ifp & g. If
p qgthere is little uncertainty as to which message and key will ke
chosen,M; and K;. Now suppose he intercept€E;. The a posteriori
probabilities of both keys and both messages are easily seém be 1/2,
and hence the equivocation for both key and message is one athative,
greater than before. On the other hand, ifE is intercepted, the more
probable event, the equivocation for both key and message decases
more than enough to compensate for the other increase, and ghmean
equivocation of both key and message decreases. This is a geal
property of all secrecy systems.

Theorem 12: The mean equivocation of keyQk (N) is a non-increasing
function of N. The mean equivocation of the rst A
letters of the message is a non-increasing function of
the number N which have been intercepted. IfN letters
have been intercepted, the equivocation of the rstN
letters of message is less than or equal to that of the
key. These may be written

Qk(S) Qk(N) S N
Qu(M) Qm(N) M N
Qm (N) Qk(N)

The quali cation regarding A letters in the second result of
the theorem is so that the equivocation will not be calculatel with respect
to the amount of message that has been intercepted. If it is, lte message
equivocation may (and usually does) increase for a time, duenerely to
the fact that more letters stand for a larger possible range bmessages.
The results of the theorem are what we might hope from a good resure
of equivocation, since we would hardly expect to be worse o b the
average after intercepting material than before. The fact hat they can
be proved gives additional justi cation to our de nition.
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The results of this theorem can be proved by a substitution
in the property 6 of section 1. Thus to prove the rst or second we have
for any chance eventsA and B

Q(B) Qa(B)

If we identify B with the key (knowing the rst S letters of cryptogram)
and A with the remaining N S letters we obtain the rst result. Similarly
identifying B with the message gives the second result. The last result
follows from

QM) Q(K)+ Qk (M)
and the fact that Qx (M) = 0 since K uniquely determinesM .

Theorem 13: S
Q(K) = IMj ] Ej+ K]
QM) = [Mj j Ej+ jH]
where
X
jHj = P(M;E)logPwm (E)
M;E
We have
X
Q(K) = P(E)Pe (K)log Pe (K)
E;K
P(K)Pk (E
pe (k) = PP (E)
E
Hence

X X
Q(K) = P(K)Pk (E)log P (K) P(K)Pk (E)log Pk (E)

X
+ P(K)Pk (E)logP(E)

Summing the rst term on E gives P P(K) log P(K) = jKj.
In the second term Pk (E) is P(M), the unique M that gives E
with key K. Summing onK then gives

P(M) log P(Me,: iMj.
The third term is P(E) log P(E) = jE].
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The second equation in the theorem is proved by the same
method.

P P(E)PE (M) logPe (M)

Q(M)

P
P(M)Py (E)log 2 (&)

P P(M)Pu (E)logP(M)  P(M)Py (E)log Py (E)

+P(M)Pwm (E)logP(E)

P
IMj | Ej P(M)Pw (E)logPwv (E)

The last term here may be interpreted as follows. Group togeter all

the di erent keys that transform a xed M into the sameE, giving the

total probability to the group, which will be Py (E). The last term is

the average size of this group space weighted according to ¢hprobability

P (M) of choosing among the groups leading out oM . In case no group
contains more than one element (at any rate no group from arM with
P(M)> 0)thenjHj= jKjand Q(K)= Q(M). This is also clear since there
is then a one-to-one correspondence between the keys and reages for

any given E.

From the rst equation of the theorem we may conclude that
Q(K) = jKjin casejM|j = jE]j. This latter occurs in particular if all M's
are equally likely and all E's equally likely and there are the same number
of each. It is easy to see that this is the case with a language iwhich
every letter is equally likely and independent, and when alnost any of
the simple ciphers are used.

If we have a product systemS = T R, it is to be expected that
the second enciphering process does not decrease the equeation of
message and this is actually true as can be shown by the methsdused
above. If T and R commute either may be considered as being the rst
and hence in this case the equivocation withS is not less than the maxi-
mum for the two systemsR and T. Simple examples show that this does
not hold necessarily ifR and T do not commute.

Theorem 14: The equivocation in message of a product system
S = T R is not less than that when only R is used.
If TR= R T itis not less than the maximum of
those forR and T alone.



-67- CONHBENTHA—

If we have a product of several system® S T U, we can of
course extend this to say that the equivocation ofR S T U is not less
than that of S T U, which is not less than that for T U etc.

There is no similar theorem for the inner product since for
example if T and R are inverse processes their inner product is the
identity and the resulting equivocation zero.

Suppose we have a systerii which can be written as a
weighted sum of several system®; S; :::;;U

X
T=pR=p.S= + pmU pi=1

Q1;Q2;:5;Qm.

Theorem 15: The equivocationQ of a weighted sum of
ls_,ystems is boulgded by t?,e inequalities
pQI  Q pi Qi pi log p

These are best limits possible. TheQ's may refer either to key or to
message.

The upper limit is achieved, for example, in strongly ideal
systems (to be described later) where the decomposition igifo the
simple transformations of the system. The lower limit is acheved if
all the systemsR, S ..., U go to completely di erent cryptogram
spaces. This theorem is also proved by the general inequalkis
governing equivocation,

Qa(B) Q(B) Q(A)+ Qa(B):

We identify A with the particular system being used andB with the key
or message.

There is a similar theorem for weighted sums of languages.

Theorem 16: Suppose a system can be applied to languages
Ly, Lo, ..., Ly and has equivocation charac-
teristics Q1, Qg, p Qm. When applied to
the weighted sum  p;jL;, the equivocation Q
i§ bounded by

P
pQl Q pi Qi pi log p
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These limits are the best possible and the equivocations inwgestion
can be either for key or message.

The proof here is essentially the same as for the preceding
case.

An important consequence of the result

Q(K) = jKj+|Mj j E]

is the following.

Theorem 17: In any closed system, or any system where the
total number of possible cryptograms is equal to
the number of possible messages of letters
Q(K) j Kj (jMoj j Mj)= jKj Dn
where My = log H with H the number of pos-
sible messages dfl letters. Dy is the total
redundancy for N letters.

This is true sincejMoj E, the equality holding only if
all cryptograms are equally likely. The theorem shows that h a closed
system the key is determined only by the redundancy of the laguage|
the equivocation can decrease only as the redundancy come#ad action
and at no greater rate.

Suppose we have a pure system and let the di erent residue
classes of messages li&, C,, Cs, ..., C;. The corresponding set
of residue classes of cryptograms i€%, C%, ..., C%. The probability
of eachE in C; is the same:

P(Ck)

where' ; is the number of di erent messages inC;. Thus we have

P(E) =

E 2 C

. P
jEj = i B jog PLE)

P
P(Ci)log —P.(?‘)
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Substituting in our equation for Q we obtain:

Theorem 18: For a pure cipher

P(c)

X
Q=jKj+Mj+  P(Ci)log

This result can be used to computeQ in many cases of interest.

From the analytic point of view pure ciphers have a simple
structure. If a cryptogram is intercepted its residue classgives the
complete information obtained by the cryptanalyst. Within the residue
class the system is perfectjeach message in the class has am
posteriori probability equal to its a priori probability. For large N,
beyond the unicity point, there will usually only be one M in the class
of reasonable probability, and the problem is to determine his M .

The theorem on equivocation of pure ciphers can be altered
to show this. We have

" pC)Ig e = 7 P(C)IogP(G) T P(Gilog k-

P
P (Ci)logk

+

P P(C)logP(C)+ Qu(K) | Ki

Hence

R = ,
Q(K) =jKj+jMj+ P(Ci)log B

P
iMj+Qu(K)+  P(Ci)logP(Ci)

and

X
QM) = jMj [ P(Ci)logP(Ci)]

The equivocation of message is the equivocation of messagefbre the
cryptogram was intercepted less the information imparted ly a speci-
cation of its residue class.
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21. Key Appearance Characteristic

Suppose the cryptanalyst hasN letters of message and\
letters of the equivalent cryptogram. Then he can calculatethe a
posteriori probabilities of the various keys on the basis of this infor-
mation, and if N is small there will remain a certain equivocation of
key. For example in simple substitution, knowing 20 lettersof message
and cryptogram does not disclose the entire key, since onlytaut 12
letters of the 26 will be represented. Thus there is a residdaequivo-
cation of log (26-12)!, if exactly 12 letters appear. We de re the mean
residual key equivocation as

X
QM (K)= P(E;M)PE;M (K)lOgPE;M (K)
E;:M;K

when P(E; M) is the a priori probability of having messageM and
cryptogram E, and Pe.v (K) is the conditional probability of K with E
and M given.

This may be written by obvious arguments (assuming all
keys equally likely)

X
Qu(K)= log (M:K)

MiK
where (M;K ) is the number of di erent keys from M in parallel with
K, that is which go to the sameE asK.

For simple substitution let P be the probability that a
received cryptogram ofN letters has dierent letters appearing in
it. Then

X
Qu(K)=  p log(26 )
Approximately

(26 )

= +I0gp2(26 )

X
Qu(K)= P (26 ) log

The bracketed terms vary slowly with and if P is fairly well
concentrated, we may take the bracket out replacing by its mean value
1. This gives, after recombination
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Qu (K) =log(26 1)

This residual key equivocation is shown for simple substittion on
English in Fig. 12. It measures how much of the key has not beensed
in enciphering N letters of text on the average.

Theorem 19: Q(K) = Q(M)+ Qum (K)

That is, the total key equivocation (when we don't know the message)
is the sum of the message equivocation and the residual key gigocation,
i.e.., the equivocation there would be in the key if we did knev the
message. This follows from the fact that the key uniquely de¢rmines
the message and properties 4 and 5 in Section 1.

22. Equivocation for Simple Substitution on an IndependentLetter Language

We will now calculate the mean equivocation in key or message
when simple substitution is applied to a two letter language probabilities
p and g for 0 and 1, with successive letters independent. We have

X
Qm = Qk = Pe Pe(K) log Pe (K)

The probability that E contains exactly s 0's in a particular permutation is
— 1 s \N s sHN s
Pe, = E(p q +op )

and the a posteriori probabilities of the identity and inverting substi-
tutions are respectively

_ quN S B pN SqS
PO o s s VT g s g 9)
There are '\s‘ terms for eachs and hence

quN S
(PN s+ oepN %)

N=x NSNSI
Q(N) s Pa og
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This may be written

P
N p*q S[slogp+(N s)logq]

Q(N)

log(psg™ S+ ofpN ®)

P
[plogp+ glogal+ % log(psg™ s+ o*p" °)

P
NR+ 2 N (pgV s+ oepN ®)log(psg" s+ gopN ©)

For p=1/3, q=2/3, and for p=1/8, q=7/8, Q has been calculated and
is shown in Fig. 13.

Now assume the language contains di erent letters chosen
independently and with probabilities p1, p2, ... pr. By approximately
the same argument we have

X Slpsz::: Sr
Q(N) = PPy’ i log PRt
(s1:sy) pP P

P P
where s; = N and o is over all permutations of 1,2;:::;n for

Hence, by obvious transformation

1 X N X X
Q(N)= NR + — pSt:iiip¥log  pStiiip™
r! S1:11S
P p p
whereR = pi logp;. In particular
Q) = Arllogr! = jKj
Q1) =R+ &r(r 1)log(r 1)

R +log(r 1)
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This checks the evident answer forQ(1)|the rst symbol
has equivocationR and the parts of the key not used addlog (r 1)!

23. The Equivocation Characteristic for a \Random" Closed Cipher.

In the preceding section we have calculated the equivocatio
characteristic for a simple substitution applied to an independent letter
language. This is about the simplest type of cipher and the snhplest
language structure possible, yet already the formulas arecsinvolved
as to be nearly useless. What are we to do with cases of practt
interest, say the involved transformations of a fractional transposition
system applied to English with its extremely complex statigical
structure? This complexity itself suggests the method of aproach.

Su ciently complicated problems can frequently be solved gatistically. In
order to do this we de ne the notion of a \random" cipher.

We suppose that the possible messages of length can be
divided into two groups, one group of high and fairly uniform probability,
while the total probability in the second group is small. This is usually
possible in information theory if the messages have any reasable
length. Let the total number of messages be

H = 2RoN
where R is the maximum rate and N the number of letters. The high
probability group will contain about

s=2"
where R is the statistical rate.

The deciphering operation de nes a functionM = g(K;E )
which can be thought of as a series of lines for eachE going back to
various M 's. By a random cipher we will mean one in which all keys
are equally likely and the k lines from any E go back to randomM 's.
The equivocation in key is given by

X
Q(K) = P(E) Pe(K) log Pe(K)

The probability of exactly m lines going back to the high
probability group is
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k Sm Skm
= 1 =
m H H

If a cryptogram with m lines going to high probability messages is
intercepted, the equivocation islog m. The probability of intercepting
such a cryptogram is easily seen to bé%.

Hence the mean equivocation is

HX O k osm s km

Q= Sk . 1 ) mlogm
m=1

We wish to nd an approximation to this for large K. If the expected

value of m, namely m = Hi kis 1, the variation of log m over the range

where the binomial distribution assumes large values will e small and

we can replacelog m by log m. This then comes out of the summation

leaving the expectedm. Hence in this condition
Q =log Sk
=logS logH +logk
=K j Mj+ Mo
=jKj ND

If m is small compared to the largek, the binomial distribution can be
approximated by a Poisson distribution*.

K w«m_€e ™ 'S
A T
Hence
P m
Q =1le ;mlogm
Pl m
= e 1 =7 log(m+1)

Fry, Probability and Its Engineering Uses, p.214.
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When we write (m + 1) for m. This may be used in the regions where
is near unity. For 1 the only important term in the series is
m = 1; omitting the others

Q =e log 2
= log2
=2iKi2 ND |og2

Thus Q(K) starts o at jKj, and decreases linearly with slope
D out to the neighborhood of N = jKj=D. After a short transition
region, Q follows an exponential with \half life" distance 1=D if D is in
alternatives per letter. If D is in digits per letter 1=D is the distance
for a decrease by a factor of 10. The behavior is shown in Fig.4lwith
the approximating curves.

By a similar argument given in the appendix, the equivocatian
of message can be calculated. It is

Q(M)= jMoj= RoN for RogN Q(K)= jKj DN
QM) = Q(K) RoN  Q(K)
QM) Q(K) "(N) Ro(N) Q(K)

where' (N) is the function of Fig. 14, with N scale reduced by a factor
of RQ. Q(M) rises linearly with slope Rq until this line intersects the

Q(KO) line. After a rounded transition it follows Q(K) down.

Most ciphers have an equivocation characteristic of this
general type, approaching zero rather sharply. We will callthe number
of letters required for near unicity of solution the unicity distance.

24. Application to Standard Ciphers

The characteristic derived for the random cipher may be
expected to apply approximately in many cases, providing sme pre-
cautions are taken and certain corrections are made. The maipoints
to be observed are the following:

1. We assumed in deriving the random characteristic that the
possible decipherments of a cryptogram are a random
selection from the possible messages. This is not true in
actual cases, but becomes more nearly true as the com-
plexity of the operations used in the enciphering process
and the complexity of the language structure increase.

The more complicated the type of cipher, the more it
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should follow the random characteristic. In the case of

a transposition cipher it is clear that letter frequencies

are preserved. This means that the possible decipher-
ments are chosen from a more limited group|not the
entire message space|and the formula should be changed.
In place of Ry one usesR; the rate for independent letters
but with the regular frequencies. This changes the re-
redundancy from

D = Rg R =.707 digits/letter

to _

D = R1 R =.538 digits/letter

and the equivocation reduces more slowly. In some other
cases a de nite tendency toward returning the decipher-
ments to high probability messages can be seen. If there
is no clear tendency of this sort, and the system is fairly
complicated, and the language a natural one (with its very
complex statistical structure)|then it is reasonable to

make the random cipher assumption.

2. In many cases the key does not all appear as soon as it
might. For example in simple substitution one must wait

for a long time to nd all letters of the alphabet represented
in the message and thus deduce the complete key. The
message becomes unique long before this point. Obviously
our random assumption falls down in such a case, since

all the di erent keys which di er only in the letters not yet
appearing lead back to the same message, and are not
randomly distributed. This error is easily corrected by

the use of the key appearance characteristic. One uses at
a particular N, the amount of key that may be expected at
that point in the formula for Q.

3. There are certain \end e ects" due to the de nite starting
of the message which produce a discrepancy from the
random characteristics. If we take a random starting point
in English text the rst letter (when we do not observe the
preceding letters) has a possibility of being any letter wih
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the ordinary letter probabilities. The next letter is more
completely speci ed since we then have digram frequencies.
This decrease in choice value continues for some time. The

e ect of this on the curve is that the straight line part is
displaced, and approached by a curve depending on how much
the statistical structure of the languag is spread out over
adjacent letters. As a rst approximation the curve

can he corrected by shifting the line over to the half
redundancy point|i.e., the number of letters where

the language redundancy is half its nal value.

If account is taken of these three e ects, reasonable estintas
of the equivocation characteristic and unicity point can bemade. The
calculation can be done graphically as indicated in Figs. 1@nd 16. One
draws the key appearance characteristigKj Qu (K) and the total re-
dundancy curvejMyj j Mj (which is usually su ciently well represented
by the line NR). The di erence between these out to the neighborhood
of their intersection is Q(M ). For the simple substitution the char-
acteristic is shown in Fig. 17. In so far as experimental chdes could
be carried out they t this curve very well. For example, the unicity
point, at about 27 letters, can be shown experimentally to le between
the limits 22 and 30. With 30 letters one nearly always has a uique
solution to a cryptogram of this type and with 22 it is usually easy to
nd a number of them.

With transposition of period d, the unicity point occurs as
about 1.5d log d=c This also checks fairly well experimentally. Note
that in this case Q is de ned only for integral multiples of d.

With the Vigerere the unicity point will occur at about 2 d+2
letters, and this too is about right. The Vigerere characteristic with
the same key size as simple substitution will be approximatly as shown
in Fig. 18. The Vigerere, Playfair and Fractional cases aremore likely
to follow the theoretical formulas for random ciphers than smple
substitution and transposition. The reason for this is that they are more
complex and give better mixing characteristics to the messges on
which they operate.

The mixed alphabet Vigerere (each ofd alphabets mixed
independently and used sequentially) has a key size,
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jKj=dlog26=26:3d
and its unicity point should be at about 53 d + 2 letters.

These conclusions can also be put to a rough experimental
test with the Caesar type cipher. In the particular cryptogram analyzed
in Table I, section 19, the function Q(N) has been calculated and is given
below, together with the values for a random cipher

N 0 1 2 3 4 5

Q (observed) 141 125 1.00 .60 .34 O
Q (calculated) 1.41 125 .98 54 .15 .03

The agreement is seen to be quite good, especially when we
remember that the observedQ should actually be the average of many
di erent cryptograms, and that D for the larger values of N is only
roughly estimated.

It appears then that the random cipher analysis can be used
to estimate equivocation characteristics and the unicity dstance for
the ordinary types of ciphers.

25. Solving Systems Using OnlyN -Gram Structure

The preceding analysis can also be applied to cases where the
cryptanalyst is assumed to know or use only a limited knowlede of the
structure of the language. If no data about the language othethan the
digram frequencies is used in solving cryptograms the equbcation
curves may be computed, using for the redundancy curve that btained
from D, alone. This curve lies below the curve for all redundancy and
the unicity point will therefore be moved to a larger N. Fig. 19 shows
the Q curves for simple substitution on normal English when the cypt-
analyst uses only digram structures.

26. Validity of a Cryptogram Solution

The equivocation formulas are relevant to questions which
sometimes arise in cryptographic work regarding the validly of an
alleged solution to a cryptogram. In the history of cryptography one
nds many cryptograms, or possible cryptograms, where clegr analysts
have found a \solution". It involved, however, such a comple process, or
the material was so scanty; that the question arose as to whéier the
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cryptanalyst had \read a solution" into the cryptogram. See for example
the Bacon-Shakespeare ciphers and the \Roger Bacon" manuspt.

In general we may say that if a proposed system and key
solves a system for a length of material considerably greatehan the
unicity distance the solution is trustworthy. If the materi al is of the
same order or shorter than the unicity distance the solutionis highly
suspicious.

This e ect of redundancy in gradually producing a unique
solution to a cipher can be thought of in another way which is telpful.
The redundancy is essentially a series of conditions on theetters of
the message, which insure that it be statistically reasonale. These
consistency conditions produce corresponding consistepconditions
in the cryptogram. The key gives a certain amount of freedom 6 the
cryptogram, but as more and more letters are intercepted, tle consistency
conditions use up the freedom allowed by the key. Eventuallythere
is only one message and key which satisfy all the conditionsnal we have
a unique solution. In the random cipher the consistency contions are
in a sense \orthogonal” to the \grain of the key" and have their full
e ect in eliminating messages and keys as rapidly as possil This is
the usual case. However, by proper design it is possible toide up"
the redundancy of the language with the \grain of the key" in such a way
that the consistency conditions are automatically satis ed and Q does not
approach zero. These \ideal" systems are of such a nature thahe
transformations T; all induce the same probabilities in theE space.

Ideal characteristics are shown in Fig. 20.

27. Ideal Secrecy Systems

We have seen that perfect secrecy requires an in nite
amount of key. With a nite key size, the equivocation of key and message
generally approach zero, but not necessarily so. In fact its possible
for Q(K) to remain constant at its initial value jKj. Then, no matter how
much material is intercepted, there is not a unique solutionbut many of
comparable probability. We will de ne an \ideal" system as one in which
Q(K) and Q(M) do not approach zero asl 1 . A \strongly ideal" system
is one in which Q(K ) remains constant at jK j.

See Fletcher Pratt, \Secret and Urgent"



-78- CONHBENTHA—

An example is a simple substitution on an arti cial language
in which all letter probabilities are the same and each lette independently
chosen. It is clear that Q(K) = jKj and Q(M) rises linearly along a line
of slopeRg until it strikes the line Q(K), after which it remains constant
at this value.

With natural languages it is in general possible to approxinmate
the ideal characteristic|the unicity point can be made to occ ur for as
large N as is desired. The complexity of the system needed usually
goes up rapidly as we attempt to do this, however. It is not alvays
possible to actually attain the ideal characteristic with any system of
nite complexity.

To approximate the ideal equivocation, one may rst operate
on the message with a transducer which reduces to the normabfm|
i.e., with all redundancies removed. After this almost any smple
ciphering
system|substitution, transposition, Vigerere, etc., is s atisfactory.
The more elaborate the transducer and the nearer the output$ to
normal form, the more closely will the secrecy system apprdrate
the ideal characteristic. Theorem 20: A necessary
and su cient condition that T be strongly ideal is that
for any two keys T, lTJ- is a measure preserving
transformation of y, into itself.

This is true since the a posteriori probability of each key
is equal to its a priori probability if and only if this condition is satis ed.

28. Examples of Ideal Secrecy Systems

Suppose our language consists of a sequence of letters all
chosen independently and with equal probabilities. Then tke redundancy
is zero,jMgj = jM |, and from Theorem 15,Q(K) = jKj. We obtain the
result

Theorem 21: If all letters are equally likely and independetany
closed cipher is strongly ideal.

The equivocation of message will rise along the key appear-
ance characteristicjKj Qwm (K) which will usually approach jK j, although
in some cases it does not. In the cases of N-gram substitutiorrans-
position, Vigerere and variations, fractional, etc., we have strongly
ideal systems for this simple language withQ(M)!j KjasN !'1
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If the letters are independent but are not all equally probalde,
the transposition cipher characteristics remain essentily the same. The
asymptotic equivocations of both key and message are clegrjKj. In the
substitution cipher they will be less. If all the letter prob abilities are
di erent, then the asymptotic equivocations of both key and message are
zero. The letters can all eventually be determined by frequecy count
(apart from certain exceptional sequences of zero measurepuppose
now that there are 7 letters with probabilities,

Pi=P,<P3<Ps4=Ps=Pg <Py

In this case we cannot separatg; from p, or ps ps and ps from each
other, but the di erent unequal probability groups can be eventually
separated.

If all substitutions are a priori equally likely, there will be
an asymptotic uncertainty among

2! 3l

equally likely (a posteriori) keys. Hence, the asymptoticQ will be

Q1 (M)= Q1 (K)=log 2!3!

In general it is clear that the asymptotic equivocation with a substitution
where the di erent substitutions are equally likely is

Q1 M)= Q1 (K)=log H

where H is the order of the group of substitutions on the letter proba
bilities p;  ps which leave this set invariant.

More generally we can consider an arbitrary pure systenT
and a pure languagelL. Suppose thatT operates only \locally" on the
letters of M in the sense that thenth letter of cryptogram depends only
on n and a certain nite number of the letters of M in the neighborhood
of the nth one:

en = fF(K;n;my;Mp=1;  Mp=p)
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Then we can show that there is a certain subgroup of the transfrmations
T, 1Tj which are probability preserving in the languageL. In the

limiting cases these would consist of the identity or of the vinole group

T T

Theorem 22: Under these conditions the asymptotic equivodion of key
is the logarithm of the order of this subgroup of measure
preserving transformations.

An ideal secrecy system su ers from a number of disadvantage

1. The system must be closely matched to the language. This
requires an extensive study of the structure of the language
by the designer. Also a change in statistical structure or a
selection from the set of possible messages as in the case
of probable words (words expected in this particular crypto
gram) renders the system vulnerable to analysis.

2. The structure of natural languages is extremely complicted,
and this re ects in a complexity of the transformations re-
quired to reduce them to the normal form. Thus any machine
to perform this operation must necessarily be quite involvel,
at least in the direction of information storage, since a
\dictionary" of magnitude greater than that of an ordinary
dictionary is to be expected.

3. In general, reduction of a natural language to a normal
form introduces a bad propagation of error characteristic.
Error in transmission of a single letter produces a region
of changes near it of size comparable to the length of
statistical e ects in the original language.

29. Multiple Substitute Ideal Systems

There is another way of obtaining ideal or nearly ideal
characteristics using multi-valued secrecy systems. Supmse our
language contains only three letters with probabilities 1/8, 3/8, and
4/8, and that successive letters in a message are chosen irpEndently.
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Let there be 1 substitute for the rst letter, 3 for the second and 4 for
the third, and choose at random among the possible substitugs for a
letter. It is clear that this system is ideal. If the dierent probabilities
are incommeasurable, we cannot exactly achieve the ideal bavior, but
can approximate it, by using enough substitutes, as closelas desired.

If the language is more complex, with transition probabilities,
this general method can still be used, but it becomes more iralved.
Suppose the choice of a letter depends only on the two precedj letters,
not on any more remote part of the message. The transition prba-
bilities p;; (k) completely describe the statistical structure of the
language. We supply substitutes fork when it follows i, j in proportion
to p;; (k). Of all our m substitutes mp;; (k) representk after the pair
i;j . As before one chooses from the possible substitutes for atier at
random. The cryptogram will then be a random sequence of then substitute
letters.

As an example, suppose the;(j ) are the only statistics of
the language and the values are given by

ilj 1 2 3
1 1 3 6
2 2 5 3
3 9 1 O

With 10 substitutes 0, 1, 2, ..., 9 we construct a substitute table
assigning substitutes (chosen randomly) in proportion to he frequencies.
The following is a typical key.

i|] 1 2 3

1 7 0,56 1,2;3,4,8;9
2 3,9 1,2,5,6,7 0, 4;8

3 0;1,2,3,56;7;8,9 4
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If a 3 follows a 2 in the message we substitute one of 0, 4, 8 far, i
the choice being random. A second table must be supplied forhe rst
letter of the message, corresponding to the unconditional babilities
of the three letters.

Although of theoretical interest it is doubtful whether such
systems would be of much use practically because of their cqutexity
and message expansion in ordinary cases. However, the rstparoxi-
mation to such systems, matching letter frequencies, has lem used in
ciphers and is standard practice in codes (where one matchegord
frequencies).

30. Equivocation Rate

We now return brie y to cases where the key is not nite,
but is supplied constantly, as in the Vernam system and the running key
cipher. In such cases we may de ne equivocation \rates". Oneconsiders
the equivocation Q(N) of the message wherN letters have been inter-
cepted. The equivocation rate for the message is de ned as thlimit
(assuming it exists):
H 0
i Q
The rate for equivocation of key would be de ned similarly, using the
equivocation in the part of the key that has been used only, btiof course
these two are the same. There are results for these parameter
analogous to those obtained with nite key cases. LetR® be the mean
rate of using key.

QN) _
N

Theorem 23:

QO RO
In case the equality holds we have the analogue of ideal systes where
the complete information of the key goes into equivocation.If R°> R

the rate of the message source, we can obtain perfect secréinyfact
we may de ne perfect secrecy as the case in whic°= R.

In the random case we have the analogous result
QOZ RO D

31. Further Remarks on Equivocation and Redundancy

We have taken the redundancy of \normal English” to be
about .7 digits per letter or 50% of Rg. This is on the assumption that
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word divisions were omitted. It is an approximate gure based on
statistical structure of the order of lengths of perhaps 8 I¢ters, and
assumes the text to be of an ordinary type, such as newspaperriting,
literary work, etc. Various methods of calculating redundancy have

been devised and will be described in the memorandum on infaration
mentioned in the introduction. We may note here two methods d roughly
estimating this number which are of cryptographic interest

A running key cipher is a Vernam type system where in place
of a random sequence of letters the key is a meaningful text. dlv it is
known that running key ciphers can usually be solved uniquel. This
shows that English can be reduced by a factor of two to one andniplies
a redundancy of at least 50%. This gure cannot be reduced ver much,
however, for a number of reasons, unless long range \meanihg
structure of English is considered.

The running key cipher can be easily improved to lead to
ciphering systems which could not be solved without the key.If one uses
in place of one English text, about 4 di erent texts as key, adling them
all to the message, a su cient amount of key has been introdued to
produce a high positive equivocation rate. Another method vould be to
use say every 10th letter of the text as key. The intermediatdetters
are omitted and cannot be used at any other point of the messag This
has the same e ect, since the mean rate for these spaced leteemust
be over .8Ry.

These methods might be useful for spies or diplomats who
could use books or magazines for the key source.

A second way of showing the high redundancy of English is
to delete all vowels from a passage. In general it is possibte I
them in again uniquely and recover the original, without knowing it in
advance. As the vowels constitute about 40% of the text this pits a limit
on the redundancy. Actually there is considerable redundany left, the
various letter and digram frequencies being far from unifom.

This suggests a simple way of greatly improving almost any
simple ciphering system. First delete all vowels, or as muclof the
message as possible without running the risk of multiple soitions, and
then encipher the residue. Since this reduces the redundapdy a
factor of perhaps 3 or 4 to 1, the unicity point will be moved ou by
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this factor. This is one way of approaching ideal systems|using the
decipherer's knowledge of English as part of the decipherim system.

Two extremes of redundancy in English prose are repre-
sented by Basic English and Joyce's \Finnegans Wake". The bsic
English vocabulary consists of only 850 words, and a rough &mate
puts the redundancy at about 70%. A cipher applied to this sot of text
would rapidly approach unicity. Joyce, on the other hand, wauld be
relatively easy to encipher. The small redundancy is disclsed by the
di culty in lling in correctly even a single missing letter from
\Finnegans Wake". What the numerical value is, would be di ¢ ult to
determine; it varies widely throughout the book.

The mathematical extremes of redundancy, 0 and 100%, can
be constructed in arti cial languages. In the rst we have e.g., a
single possible messageQ(M ) = 0 identically and Q(K) in the random
cipher case declines as rapidly as possible i.e., as rapidhg one sends
information on the system. In the other extreme all letter sequences
are equally likely, and any closed ciphering system is ideal

We may refer here to a memorandum by Nyquist (Enciphering|
E ect of Redundancy in Language, May 30, 1944) in which some gestions
of the type we are considering here are discussed.

32. Distribution of Equivocation

A more complete description of a secrecy system applied
to a language than is a orded by the equivocation characterstics can
be found by giving the distribution of equivocation. For N intercepted
letters we consider the fraction of cryptograms for whichQ (for these
particular E's, not the mean Q) lies between certain limits. This gives
a density distribution function

P(Q:;N) dQ

for the probability that for N letters Q lies between the limits Q and
Q + dQ. The mean equivocation we have previously studied is the memn
of this distribution

z

P(Q;N) Q dQ:

The function P(Q;N) can be thought of as plotted along a third dimension,
normal to the paper, on the Q; N plane. If the language is pure, with a
small in uence range (compared to E—) and the cipher is pure the function
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P(Q; N) will usually be a ridge in this plane whose highest point folows
approximately the mean Q, at least until near the unicity point. In

this case, or when the conditions are nearly veri ed, the mea Q curve
gives a reasonably complete picture of the system.

On the other hand, if the language is not pure, but made up of

a set of pure components
X
L= pi Li

having di erent equivocation curves with the system, sayQ;;Q2:::Q
then the total Q distribution will usually be made up of a series of ridges.
There will be one for eachL; weighted in accordance with itsp;. The
mean equivocation characteristic will be a line somewherenithe midst
of these ridges and may not give a very complete picture of theitu-
ation. This is shown in Fig. 21.

A similar e ect occurs if the system is not pure but made up
of several systems with di erent Q curves. There is then a series of
ridges in the P(Q; N) plot, and the mean Q strikes an average which may
lie between ridges and be a very improbable value of for a particular
cryptogram. These e ects are illustrated in Fig. 22.

The e ect of mixing pure languages which are near to one
another in statistical structure is to increase the width of the ridge.
Near the unicity point this tends to raise the mean equivocaton, since
equivocation cannot become negative and the spreading is @y in the
positive direction. We expect therefore, that in this region the calcu-
lations based on the random cipher should be somewhat low.
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PART I

Practical Secrecy

33. The Work Characteristic

After the unicity point has been passed there will usually be
a unique solution to the cryptogram. The problem of isolating this
single solution of high probability is the problem of cryptanalysis. In
the region before the unicity point we may say that the problem of
cryptanalysis is that of isolating all the possible solutimns of high proba-
bility (compared to the remainder) and determining their various proba-
bilities.

Although it is always possible in principle to determine these
solutions (by trial of each possible key for example) di erent enciphering
systems show a wide variation in the amount of work required.The
average amount of work to determine the key for a cryptogram 6N
letters W (N ) measured say in man hours may be called the work
characteristic of the system. This average is taken over alinessages
and all keys with their appropriate probabilities.

For a simple substitution on English the work and equivocation
characteristics would be somewhat as shown in Fig. 23. The died
portion of the curve is where there are numerous possible agions and
these must all be determined. In the solid portion after the wnicity point
only one solution exists in general, but if only the minimum necessary
data are given a great deal of work must be done to isolate it. A more
material is used the work rapidly decreases toward some asypiotic
valuelwhere the additional data no longer reduces the labor.

This is the work characteristic for the key. It is clear that
after the unicity point this function can never increase. There is also
a work characteristic for the message; the average amount afork to
determine the message (or all reasonable messages). ThidIwnin
ordinary cases, be below or at any rate not far above the worktwaracter-
istic for the key, out to fairly large N, since generally if the key is de-
termined it is easy to nd M by the deciphering transformation. For
very large N, however, this function will increase due merely to the
labor of deciphering the large amount of intercepted materal.
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Essentially the behavior shown in Fig. 23. can be expected
with any type of secrecy system where the equivocation appmches
zero. The scale of man hours required, however, will di er geatly
with di erent types of ciphers, even when the Q curves are about the
same. A Vigerere or compound Vigerere, for example, with the same
key size would have a much better (i.e., much higher) work chiac-
teristic. A good practical secrecy system is one in which thaV (N)
curve remains su ciently high out to the number of letters on e expects
to transmit with the key, to prevent the enemy from actually c arrying out
the solution, or to delay it to such an extent that the information is
obsolete.

We will consider in the following sections ways of keeping tk
function W(N) large, even thoughQ may be practically zero. This is
essentially a \max min" type of problem as is always the case Wwen we
have a battle of wits. In designing a good cipher we must maximize
the minimum amount of work the enemy must do to break it. It is not
enough merely to be sure none of the standard methods of cryphalysis
work|we must show that no method whatever will break the syste m easily.
This, in fact, has been the weakness of many systems|they werede-
signed to resist all the known methods of solution but had a stucture
leading a to a new method which applied to them. In the history of crypto-
graphy there have been many ciphers which were at rst though un-
breakable but later disclosed weaknesses of their own.

The problem of good cipher design is essentially one of ndig
di cult problems, subject to certain other conditions. Thi s is a rather
unusual job for the mathematician, who ordinarily is seekirg the simple
and easily soluble problems in a eld.

How can we ever be sure that a system which is not ideal and
therefore has a unique solution for su ciently large N will require a
large amount of work to break with every method of analysis? There
are two approaches to this problem. (1) We can study the possie

See von Neumann and Morgenstern, \Theory of Games". The situation between  the
cipher designer and cryptanalyst can be thought of as a \game" of a very sim ple
structure; a zero-sum two person game with complete information, and ju st two \moves".
The cipher designer chooses a system for his \move". Then the cryptanalyst is informed
of this choice and chooses a method of analysis. The \value" of the pla y is the average work
required to break a cryptogram in the system by the method chosen.
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methods of solution available to the cryptanalyst and attempt to describe
them in su ciently general terms to cover any methods he might use.

We then construct our system to resist this \general" method of solution.
(2) We may construct our ciphers in such a way that breaking it is
equivalent to (or requires at some point in the process) the slution of
some problem known to be laborious. Thus, if we could show tha
solving a system requires at least as much work as solving a stgm of
simultaneous equations in a large number of unknowns, of a coplex
type, then we will have a lower bound of sorts for the work chaacteristic.

The next three sections are aimed at these general problems.
It is di cult to de ne the pertinent ideas involved with suc  ient pre-
cision to obtain results in the form of mathematical theorems, but it
is believed that the conclusions, in the form of general prigiples,
are correct.

34. Generalities on the Solution of Cryptograms

After the unicity distance has been exceeded in intercepted
material, any system can be solved in principle by merely trjng each
possible key until the unique solution is obtained|i.e., a de ciphered
message which \makes sense" in . A simple calculation shows
that this method of solution (which we may call complete trial and
error) is totally impractical except when the key is absurdly smal.

Suppose, for example, we have a key of 26! possibilities
or about 26.3 digits, the same size as in simple substitutioron English.
This is, by any signi cant measure, a small key. It can be written on
a small slip of paper, or memorized in a few minutes. It could le
registered on 27 switches each having ten positions or on 88vb
position switches.

Suppose further, to give the cryptanalyst every possible
advantage, that he constructs an electronic device to try kgs at the
rate of one each microsecond (perhaps automatically seléng from the
results by a ? test for statistical signi cance). He may expect to
reach the right key about half way through, and after an elap®d time of
about

2 10%
2 60 24 365 10°

=3 10%years

In other words, even with a small key complete trial and
error will never be used in solving cryptograms, except in tke trivial
case where the key is extremely small, e.g., the Caesar withty 26
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possibilities, or 1.4 digits. The trial and error which is used so
commonly in cryptography is of a di erent sort, or is augmented by
other means. If one had a secrecy system which required congpé
trial and error it would be extremely safe. Such a system woud

result, it appears, if the original messages, all say of 100@tters,

were a random selection of BN from the set of all 2%°N sequences of
1000 letters. If any of the simple ciphers were applied to thee it
seems that little improvement over complete trial and error would be
possible.

The methods actually used often involve a great deal of
trial and error, but in a di erent way. First, the trials prog ress from
more probable to less probable hypotheses, and second, edttal
disposes of a large group of keys, not a single one. Thus theykspace
may be divided into say 10 subsets, each containing about theame
number of keys. By at most 10 trials one determines which sulet is
the correct one. This subset is then divided into several semdary
subsets and the process repeated. With the same key sizK (= 26!
=2 10?%) we would expect about 26 5 or 130 trials as compared to
107 by complete trial and error. The possibility of choosing the most
likely of the subsets rst for test would improve this result even more.
If the divisions were into two compartments (the best way) orly 90
trials would he required. Whereas complete trial and error equires
trials to the order of the number of keys, this subdividing trial and
error requires only trials to the order of the key size in altenatives.

This remains true even when the di erent keys have di erent
probabilities. The proper procedure then to minimize the eypected
number of trials is to divide the key space into subsets of egprobability.
When the proper subset is determined, this is again subdividd into
equiprobability subsets. If this process can be continuedhe number of
trials expected when each division is into two subsets will le

K]

h= log 2

If each test hasS possible results and each of these corres-
ponds to the key being in one ofS equiprobability subsets; then
_ K]
logS
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trials will be expected. The intuitive signi cance of these results
should be noted. In the two compartment test with equiprobabhility,
each test yields one alternative of information as to the key If the
subsets have very di erent probabilities as in testing a sirgle key in
complete trial and error only a small amount of information is obtained
from the test. This with 26! equiprobable keys, a test of one jelds
only

26! 1 26! 1 1 1

I y + —log—
261 29 261 T 26179261

or about 10 ?° alternatives of information. Dividing into S equiprobability
subsets maximizes the information obtained from each trialat log S,

and the expected number of trials is the total information to be obtained,
that is the key size, divided by this amount.

The question here is similar to various coin weighing
problems that have been circulated recently. A typical exanple is
the following: It is known that one coin in 27 is counterfeit, and slightly
lighter than the rest. A chemists balance is available and tte counter-
feit coin is to be isolated by a series of weighings. What is ta least
number of weighings to do this? The correct answer is 3, obtaied by
rst dividing the coins into three groups of 9 each. Two of these are
compared on the balance. The three possible results determé the
set of 9 containing the counterfeit. This set is then dividedinto 3 sub-
sets of 3 each and the process continued. The set of coins cesponds
to the set of keys, the counterfeit coin to the correct key, anl the weighing
procedure to a trial or test.

This method of solution is feasible only if the key space can
be divided into a small number of subsets, with a simple methd of
determining to which subset the correct key belongs. Startig in another
way, it is possible to solve for the key bit by bit. One does notneed
to assume a complete key in order to apply a consistency testral de-
termine if the assumption is justi ed|an assumption on a part of the
key (or as to whether the key is in some large section of the kegpace)
can be tested.

This is one of the greatest weaknesses of most ciphering
systems. For example, in simple substitution, an assumptio on a single
letter can be checked against its frequency, variety of corict, doubles
or reversals, etc. In determining a single letter the key spee is re-
duced by 1.4 digits from the original 26. The same e ect is seein all
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the elementary types of ciphers. In the Vigerere, the assumtion of
two or three letters of the key is easily checked by deciphenig at other
points with this fragment and seeing whether clear emergesThe com-
pound Vigerere is much better from this point of view, if we assume a
fairly large number of component periods, producing a repetion rate
larger than will be intercepted. Here as many key letters areused in
enciphering each letter as there are periods|although this is only a
fraction of the entire key, at least a fair number of letters must be
assumed before a consistency check can be applied.

Our rst conclusion then, regarding practical small key
cipher design, is that a considerable amount of key should based in
enciphering each small element of the message.

35. Statistical Methods

It is possible to solve many kinds of ciphers by statistical
analysis. Consider again simple substitution. The rst thing a crypto-
grapher does with an intercepted cryptogram is to make a fregency
count. If the cryptogram contains say 200 letters it is safe b assume
that few, if any, letters are out of their frequency groups, this being a
division into 4 sets of well de ned frequency limits. The log of the
number of keys within this limitation may be calculated as

log 2! 9! 9! 6! = 1428

and the simple frequency count thus reduces the key uncertaty by
12 digits, a tremendous gain.

In general, a statistical attack proceeds as follows. A cedin
statistic is measured on the intercepted cryptogramE. This statistic
is such that for all reasonableM it assumes about the same valueSy ,
the value depending only on the particular keyK that was used. The
value thus obtained serves to limit the possible keys, to thee which
would give values ofS in the neighborhood of that observed. A statistic
which does not depend orK or which varies as much withM as with K
is net of value in limiting K. Thus in transposition ciphers, the fre-
quency count of letters gives no information aboutK |every K leaves
this statistic the same. Hence one can make no use of a frequencount
in breaking transposition ciphers.

More precisely one can ascribe asolving powef to a given
statistic S. For each value ofS there will be a conditional equivocation
of the key Qs(K), the equivocation whenS has its particular value and
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that is all that is known concerning the key. The weighted mean of these
values

P(S) Qs(K)

gives the mean equivocation of the key wherg is known, P (S) being the
a priori probability of the particular value S. The key sizejK j less this
mean equivocation measures the \solving power" of.

In a strongly ideal cipher all statistics of the cryptogram are
independent of the particular key used. This is the measure geserving
property of T; T, ! on the E space orT; T¢ onthe M space mentioned
above.

There are good and poor statistics, just as there were good
and poor methods of trial and error. Indeed the trial and erra testing
of hypothesisis a type of statistic, and what was said above regarding
the best types of trials holds generally. A good statistic fo solving
a system must have the following properties:

1. It must be simple to measure.

2. It must depend more on the key than on the message if it
is meant to solve for the key. The variation with M should
not mask its variation with K.

3. The values of the statistic that can be \resolved" in spite
of the \fuzziness" produced by variation in M should divide
the key space into a number of subsets of comparable
probability, with the statistic specifying the one in which the
correct key lies. The statistic should give us sizable
information about the key, not a tiny fraction of an alterna-
tive.

4. The information it gives must be simple and usable. Thus
the subsets in which the statistic locates the key must be of
a simple nature in the key space.

Frequency count for simple substitution is an example of a
very good statistic.

Two methods (other than recourse to ideal systems) suggest
themselves for frustrating a statistical analysis. These w may call
the methods ofdi usion and confusion. In the method of di usion the
statistical structure of M which leads to its redundancy is \dissipated"
into long range statistics|i.e., into statistical structur e involving
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long combinations of letters in the cryptogram. The e ect here is that
the enemy must intercept a tremendous amount of material to te down
this structure, since the structure is evident only in blocks of very
small individual probability. Furthermore even when he has su cient
material, the analytical work required is much greater sine@ the re-
dundancy has been di used over a large number of individual tatistics.
An example of di usion of statistics is operation on a messag M =
mq;my; ms;::: with a \smoothing" operation, e.qg.

x
Vo = Mp+i Mmod 26

i=1
adding s successive letters of the message to get a lettgy,. One
can show that the redundancy of they sequence is the same as that of
the m sequence, but the structure has been dissipated. Thus the tker
frequencies iny will be more nearly equal than in m, the digram
frequencies also more nearly equal etc. Indeed any reversghbopera-
tion which produces one letter out for each letter in and doesot have
an in nite \memory" has an output with the same redundancy as the
input. The statistics can never be eliminated without compression, but
they can be spread out.

The method of confusion is to make the relation between the
simple statistics of E and the simple description ofK a very complex
and involved one. In the case of simple substitution, it was asy to
describe the limitation of K imposed by the letter frequencies okE.

If the connection is very involved and confused the enemy castill
evaluate a statistic S; say which limits the key to a region of the key
space. This limitation, however, is to some complex regiorR in the
space|folded over many times, and he has a di cult time making use
of it. A second statistic S, limits K still further to R, hence it lies

in the intersection region R;R5, but this does not help much because it
is so di cult to determine just what the intersection is.

To be more precise let us suppose the key space has certain

determine the kj. However, in the method of confusion, the equations
connecting these sets of variables are involved and complexVe have, say,

fi(kiskay 1 Kp) = 81
fo(kiika;  1kp) = S2

fn(keskz; ;kp): Sn
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and all the f; involve all the k; . The cryptographer must solve this
system simultaneously|a di cult job. In the simple (not conf used)
cases the functions involve only a small number of thé; |or at least
some of these do. One rst solves the simpler equations, evahting
some of thek; and substitutes these in the more complicated equations.

The conclusion here is that for a good ciphering system steps
should be taken either to di use or confuse the redundancy (o both).

36. The Probable Word Method

One of the most powerful tools for breaking ciphers is the
use of probable words. The probable words may be words or phsas
expected in the particular message due to its source, or theynay merely
be common words or syllables which occur in any text in the laguage,
such as the, and, tion, that, etc.

In general, the probable word method is used as follows.
Assuming a probable word to be at some point in the clear, the &y or
a part of the key is determined. This is used to decipher othemparts of
the cryptogram and provide a consistency test. If the other @mrts come out
in clear, the assumption is justi ed.

There are few of the classical type ciphers that use a small
key and can resist long under a probable word analysis. From a
consideration of this method we can frame a test of ciphers wibh
might be called the acid test. It applies only to ciphers with a small key
(less than say 50 digits), applied to natural languages, andiot using the
ideal method of gaining secrecy. The acid test is this: How d¢ult
is it to determine the key or a part of the key knowing a sample é
message and corresponding cryptogram? Any system in whichhis is
easy cannot be very resistant, for the cryptanalyst can alwgs make use
of probable words, combined with trial and error, until a consistent
solution is obtained.

The conditions on the size of the key make the amount of
trial and error small, and the condition about ideal systemsis necessary,
since these automatically give consistency checks. The estence of
probable words and phrases is implied by the condition of nairal
languages. Conversely, it seems reasonable that if the keg di cult
to obtain, knowing a text and its cryptogram, then the system should be
strong.
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Note that this requirement by itself is not contradictory to
the requirements that enciphering and deciphering be simm processes.
Using functional notation we have for enciphering

E=f(K;M)

and for deciphering

M = g(KE)
Both of these may be simple operations on their arguments wtout
the third equation

K = h(M;E)
being simple.

We may also point out in investigating a new type of ciphering
system one of the best methods of attack is to consider how thkey
could be determined if a su cient amount of M and E were given.

With a small key, the work required to solve a system,
given a large amount of data, may be expected to be not more thaa
few orders of magnitude greater than the work required to obain the
key from a small amount of data when bothM and E are known.

The same principle of confusion can be (and must be) used
here to create di culties for the cryptanalyst. Given M = m; my:::mg
and E = e e;:::e; the cryptanalyst can set up equations for the
di erent key elements k; ky::: k. (namely the enciphering equations).

e = fo(mg;ma;iiimg; Kiiiiiky)

e = fo(my;my;:iiimg K k)

e = fs(my;my;iiimg Kiiiiike)
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All'is known, we assume, except thek;. Each of these equations should
therefore be complex in thek;, and involve many of them. Otherwise
the enemy can solve the simple ones and then the more complexes by
substitution.

From the point of view of increasing confusion, it is desiralie
to have the f; involve severalm;, especially if these are not adjacent
and hence less correlated. This introduces the undesirablieature of
error propagation, however, for then eache will generally a ect several
m; in deciphering, and an error will spread to all these.

We conclude that much of the key should be used in an involved
manner in obtaining any cryptogram letter from the message 6 keep the
work characteristic high. Further a dependence on several ncorrelated
m; is desirable, if some propagation of error can be toleratedWe are
led by all three of the arguments of these sections to considamixing
transformations”.

37. Mixing Transformations

A notion that has proven valuable in certain branches of
probability theory is the concept of a \mixing transformati on". Suppose we
have a probability or measure space , and a measure preserag
transformation T of the space into itself, i.e., a transformation such that
the measure of a transformed regiorn R is equal to the measure of the
initial region R. The transformation is called mixing if for any function
de ned over the space and any region R.

Z z z
lim f(P)dPp = dp f(P)dP:
n'l R

TR
This means that any initial region of the spaceR under successive
applications of T is mixed into the entire space with uniform density.
In general T"R becomes a region consisting of a large number of thin
laments spread throughout the region. As n increases the laments
become ner and their density more nearly constant.

An example of a mixing transformation is shown in Fig. 21.
Here measure is identi ed with Euclidean area. The space ishe
triangle, and T P is the point units of distance above pointP pro-
viding this does not go outside the triangle. When the top of the triangle is
reached a point is transferred rst to the point directly ben eath,
and then over to the right an irrational fraction of the base width.
If this carries the point beyond the right edge, the extra digance is
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measured from the left edge. Successive transforms of a sgaaegion
are shown in Fig. 21. For very large the square is turned into a
uniform grating of nearly parallel thin strips covering the triangle.

A mixing transformation in this precise sense can occur
only in a space with an in nite number of points, for in a nite point
space the transformation must be periodic. Speaking loosglhowever,
we can think of a mixing transformation as one which distributes any
reasonably cohesive region in the space fairly uniformly ar the
entire space. If the rst region could be described in simpleterms, the
second would require very complex ones. In the case of crypgoaphic
interest, the original region is all of a certain simple staistical
structure|after the mix the region is distributed and the str ucture
di used and confused.

Good mixing transformations are often formed by repeated
products of two simple non-commutating operations. See foexample
the mixing of pastry dough discussed by Hopf. The dough is rst rolled
out into a thin slab, then folded over, then rolled, and
then folded again, etc.

In a good mixing transformation of a space with natural
coordinates X 1; X »; ::1; X5 the point X; is carried by the transformation
into a point X;, with

Xi=fi(Xq;X2;:::Xs) i=1;2;:::;8

and the functions f; are complicated, involving all the variables in a
\sensitive" way. A small variation of any one, X3, say, changes all the
Xi considerably. If X3 passes through its range of possible variation
the point X; traces a long winding path around the space.

Various methods of mixing applicable to statistical sequeres
of the type found in natural languages can be devised. One wbh looks
fairly good is to follow a preliminary transposition by a sequence of
alternating substitutions and simple linear operations, alding adjacent
letters mod 26 for example. Thus

H = LSLSLT

where T is a transposition, L is a linear operation, andS is a
substitution.

E. Hopf, On Causality, Statistics and Probability, Journal of M ath. and
Physics, V 13, pp. 51-102, 1934.
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38. Ciphers of the TypeT¢HS;

Suppose thatH is a good mixing transformation that can be
applied to sequences of letters and thafly and S; are any two simple
families of transformations, i.e., two simple ciphers, whth may be
the same. For concreteness we may think of them as both simple
substitutions.

It appears that the cipher THS will be a very good ciphering
system from the standpoint of its work characteristic. In the rst
place it is clear on reviewing our arguments about statistial methods
that no simple statistics will give information about the ke y|any
signi cant statistics derived from E must be of a highly involved and
very sensitive type|the redundancy has been both di used and confused
by the mixing H. Also probable words lead to a complex system of
equations involving all parts of the key (when the mix is good, which
must be solved simultaneously. The bad features of such a sigsn are
propagation of errors and complexity of operations, both ofwhich get
worse as the mixing ofH gets better.

It is interesting to note that if the cipher T is omitted the
remaining system is similar to S and thus no stronger. The enemy
merely \unmixes" the cryptogram by application of H ! and then solves.
If S is omitted the remaining system is much stronger thanT alone if
the mix is good, but still not comparable to THS.

The basic principle here of simple ciphers separated by a
mixing transformation can of course be extended. For exam@ one
could use

TcHi S H2R,

with two mixes and three simple ciphers. One can also simplf by
using the same ciphers, and even the same keys (inner prodycs
well as the same mixing transformations. This might well sinplify
the mechanization of such systems.

The mixing transformation which separates the two (or more)
appearances of the key acts as a kind of barrier for the enemy|t
is easy to carry a known element over this barrier but an unknevn (the
key) does not go easily.

By supplying two sets of unknowns, the key forS and the key
for T, and separating them by the mixing transformation H we have
\tangled" the unknowns together in a way that makes solution very
di cult.
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Although systems constructed on this principle would be
extremely safe they possess one grave disadvantage. If thexms good
then the propagation of errors is bad. A transmission error & one
letter will a ect several letters on deciphering.

39. The Compound Vigerere

In the compound Vigerere several keys of lengthd;; dy;:::
ds are written under the message and added to it modulo 26 to obtm
the cryptogram. The result is a Vigerere with key of special ??type,
whose repetition is of periodd, the least common multiple ofd;;dp;:::
ds. If we have three keys of periods 2, 3, 5 the total periodl is 30
and the total key size (2+3+5) 1:41 = 14:1 digits The situation is then

M = m; my; m3z mg ms Mg
Ki=a aa a a; ap
Ko=brbp s by byl
K3=0€1CC3C4C50C1
E=e e ee 66
with

ee=mp+ar+b+c
=mi+ax+b+c

etc.

If we assumeM and E known then, letting h; = ¢ m;:

apg+b+c=h a+ b+ =hs
Qt+thh+c=h a+b+c=h
at+thg+c=hy a+bhp+c=hg
ax+ b+ ci=hy ap+ b+ ci=hy

ag+hh+cs=hs ap+ b+ ¢ = hyo
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These equations are easily solved for the key, although notsaeasily

as in the simple Vigerere or other simple ciphers. As the nurber of
constituent periods increases the solution becomes morevialved and
time consuming. In any case we have a system of simultaneous|@a-
tions each involving S of the total of B = IS di unknowns. The unicity
point will occur at about 2B letters and if several times this amount of
material is intercepted no great di culty should be encount ered in
breaking the cipher, providing S is not more than say 6 or 8. With the
rst 9 primes as periods we have a key size of 100 letters or alib 141
digits, the unicity distance is about 200 letters and the keydoes not
repeat for 223,092,870 letters. This system, although muchetter than
such methods as simple substitution, transposition and sirple Vigerere
with equivalent key size, does not utilize the available keyfully in making
the cryptanalyst work for the solution. The equations only involve S of
the B key unknowns and these in a simple fashion. The equations eifs
combine and reduce to eliminate unknowns. If a large amount bmaterial
is available, compared to the unicity distance, particular sets of equations
can be combined to eliminate unknowns very easily. The systa possesses
the important advantage, however, of not expanding errors.One incorrect
letter of cryptogram produces one incorrect letter of decifmered text.

By relatively simple changes this system could be strengtheed
considerably. If the equations for the key elements (withM and E known)
could be made into higher degree equations rather than lingaones the
di culty of solution would increase tremendously. This cou Id easily
be done in a mechanical device by successive multiplicatien(Mod 26)
of the key letters according to some prearranged scheme.

40. Incompatibility of the Criteria for Good Systems

The ve criteria for good secrecy systems given in section
12 appear to have a certain incompatibility when applied to anatural
language with its complicated statistical structure. With arti cial
languages having a simple statistical structure it is posdile to satisfy
all requirements simultaneously, by means of the ideal typeciphers.
In natural languages it seems that a compromise must be madena the
valuations balanced against one another with a view toward he particular
application.
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If any one of the ve criteria is dropped, the other four can
be satis ed fairly well, as the following examples show.

1. If we omit the rst requirement (amount of secrecy) any
simple cipher such as simple substitution will do. In the
extreme case of omitting this condition completely, no
cipher at all is required and one sends the clear!.

2. If the size of the key is not limited the Vernam system can
be used.

3. If complexity of operation is not limited, various extremely
complicated types of enciphering process can be used. The
modi ed compound Vigerere described above with many
di erent periods compounded is fairly satisfactory as an
example here, although it falls down somewhat on the key
size condition. Ideal systems and enciphered codes are
also fair examples although not too good from the propagatio
of error point of view.

4. If we omit the propagation of error condition systems of
the type THS would be very good, although somewhat
complicated.

5. If we allow large expansion of message, various systemsear
easily devised where the \correct" message is mixed with
many \incorrect" ones (misinformation). The key determines
which of these is correct.

A rough argument for the incompatibility of the ve conditio ns
may be given as follows.

From condition 5, secrecy systems essentially as studied in
this paper must be used; i.e., no great use of nulls, etc. Paxt and
ideal systems are excluded by condition 2 and by 3 and 4, respgvely.
The high secrecy required by 1 must then come from a high work
characteristic, not from a high equivocation characterisic. If the key
is small, the system simple, and the errors do not propagateprobable
word methods will generally solve the system fairly easilysince we
then have a fairly simple system of equations for the key.

This reasoning is too vague to be conclusive, but the general
idea seems quite reasonable. Perhaps if the various critericould be
given guantitative signi cance, some sort of an exchange agation could
be found involving them and giving the best physically compdible sets
of values. The two most di cult to measure numerically are th e com-
plexity of operations, and the complexity of statistical structure of the
language.
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Appendix 1

P
Deduction of pi logpi

P
It will be shown that the measure of choice pi log pi
is a logical consequence of three quite reasonable assunmpts about
the desired properties of such a measure. The three assumptis are:

in the p;, measuring the amount of \choice" when there aren possibilities
with probabilities p.

(2) C has the property that if a given choice be broken down
into two successive choices the total amount of choice is thereighted
sum of the individual choices. For example, suppose the choe is
from 4 possibilities A, B, C, D with probabilities .1, .2, .3, .4. This can
be broken down into a preliminary choice between the pairA; B and the
pair C;D. Pair A;B has a total probability .1 + .2 = .3 and pair C;D
probability .3 + .4 =.7. If pair A;B is chosen a second choice between
A and B must be made with probabilities 1+—12 = 3z and
2> = 2. If pair C;D is chosen a second choice betwedh
and D must be made with probabilities 2 and 4. Thus broken down
we have a preliminary amount of choiceC (.3, .7) and .3 of the time a
secondary choice of C % %) while .7 of the time the secondary choice
is C (2, 4). Our condition requires that the total choice C(:1;:2;:3;:4)
be the same as the weighted sum of the di erent choices when demposed,
weighted in accordance with the frequency of occurrence. Tis we require
in this case C(:1;:2;:3;:4) = C(:3;:7) + :3C(3;2) + :7C(3; ).

(3) If A(n)= C(3;2;:::1), i.e. the choice when there

n'n’
are n equally likely possibilities, the A(n) is monotonic increasing inn.
Theorem: Under these three assumptions

X
C(py;p2;:iiipn)= K pi logp;

where K is a positive constant.
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From condition (2) we can decompose a choice frod™ equally likely
possibilities into a series ofm choices each fronS equally likely
possibilities and obtain

A(S™) = mA(s)

Similarly
A(t") = nA(t)
We can choosen arbitrarily large and nd an m to satisfy
ST t"<SM+1
Thus, taking logarithms and dividing by n log S,

m logt m+1 m  logt

n logS n n n logS

where" is arbitrarily small.
Now from the monotonic property of A(n)

A(S™) A" A(S™)
mA(S) nA(t) (m+1) A(S)
Hence, dividing by nA(S),

m  A(t) m. 1or m At

n AS) n n  n A(®S

A(t) logt
A(S) logs

where K must be positive to satisfy (3).

Now suppose we have a choice from possibilities with commeasurable
probabilitiesti = ﬁ where the n; are integers. We can break down a
choice from n; possibilities into a choice fromn possibilities with
probabilities p; :::pn and then, if the ith was chosen, a choice fromm;
with equal pﬁobabilities. Using condition 2 again, we equae the total
choice from n; as computed by two methods

X X
Klog ni=C(p::5;pn)+ K pi log n;

" A()= Klogt
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Hence

@]
I

= P
=K [plog n; pi logn;]

K ? plogP—= K ? pi logpi

If the p; are incommeasurable, they may be approximated by
rationals and the same expression must hold by our continui
assumption. Thus the expression holds in general. The choécof
coe cient K is a matter of convenience and amounts to the choice
of a unit of measure.
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Appendix 2

Proof of Theorem 4

Select any messag®; and group together all cryptograms
that can be obtained from M, by an enciphering operationT;. Let this
class of cryptograms beC;. Group with M, all M that can be obtained
from M, by T, 1Tj M1, and call this classC;. The sameCf would be
obtained if we started with any other M in C; since

TsT, 'TiMy = TiM;
Similarly the same C; would be obtained.

Choosing anM (if any exist) not in C; we construct C, and
Cf in the same way. Thus we obtain the residue classes with proptes
(1) and (2). Let M; and M, be in C; and suppose
Mo=T, T, ' My

If E4 is in C{ and can be obtained fromM by

E:=T Mi=T M;i=:::T Mg

then

Er=T ToTaMo=T T,'Ty My =
=T M2 =T M2
Thus eachM; in C; transforms into E; by the same number of keys.
Similarly each E; in C; is obtained from any M in C; by the same number

of keys. It follows that this number of keys is a divisor of thetotal
number of keys and hence we have properties (3) and (4).
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Appendix 3

Equivocation of Message for Random Cipher

As before letM :::Ms be high probability messages and
Ms +1:::;My have zero probability. Let P(mj; m) be the probability
of just m lines going from a particular E, say E; to a particular high
probability M, say M1, with a total of m lines to all high probability M .
Then

.k m 1.8 1., m,1 Sy
Pmumy= M E" M)
The probability of intercepting an E with m lines to high probability M's

IS

m

S
The Q(M) expected can be thought of as contributed to by the various
M1 in the high probability group. Thus M contributes

M1 g™ = M1y, M
WIogF = log m
if there are m; lines to M; and a total of m to high probability M's.
The expectedQ is then
X mm m
QM) = HSm1  P(miim)g- tlog -
k M

m ml

The factor H sums over the variousE; and the S sums over the di erent

X
QM) =

P(mg;m)myflogm  logm;j]

~| T

the term
X
P(mg;m)my

summed onmy, gives the expectedm, when m lines go to high proba-
bility M's, i.e., m=s. Hence the rst term is

H X ~
s mP (m)logm = Q(K)

by our previous work. The second term is

— P(my;m) my log my
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If the expectedmy is 1 this term is small since it vanishes for

m; =0 or 1. The expectedm; is k=H. Thus beyond this point Q(M )
approaches closely tQ(K). The point in question is where jKj = jMoj =
RoN

or

K
N =j—j
JROJ
If the expectedm; 1 the log m; can be taken out as logmy = log k=H;

and we have

P
Hlogk P(mym)m;
= logh = jMoj j K]

In this region then

QM) = jMoj j Kj+ Q(K)
but here Q(K) = jKj j Mgj+ jMj, and therefore

Q(M)=jMj=RN

In the transition region my is about 1 andm will in ordinary
cases be very large. It is admissable then to replaceé(my; m) by
P (my), since this will not depend onm to any extent except for values
of m of very small probability. Thus we obtain for this region

H X
QM) = Q(K) - P(mi) my log m;
1
The sum has the same form as our expression f@(K ) but with 1 =H
in place of S=H. The calculations for Q(K ) can be used, therefore, with
only a change of theN scale by a factor ofR¢=D.
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Appendix 4

Key Appearance in Simple Substitution with Independent Letters

If successive letters are chosen independently and the
di erent letters have probabilities p; p2:::ps, we can calculate the
expected number of di erent letters when N letters have been intercepted.
It is

_ X N
diN)=S 1 p)
i
To prove this, imagine all the possible sequences M letters written
down, each with a frequency corresponding to its probabiliy, giving a
total of say A sequences. Letter 1 does not appear in (1 P;)N A of
these; letter 2 does not appear in (1 P,)N A etc. Therefore, the total
number of letters missing from sequences is
X N
A 1 p)

Dividing by A gives us by de nitjgn the expected number of missing
letters from a random sequence, (1 p;)N. The number of di erent
letters expected in a sequence is the total number of letter§ minus
this, giving the desired result.

If all the p; are equal this reduces toS S(1 p)V, an ex-
ponential approach to S. In the general case there are a series of ex-
ponentials with di erent time constants, corresponding to di erent p;,
which are added to gived(N).

With the frequencies of normal English used for thep; we
obtain the curve shown in Fig. 25, along with an experimentalcurve.
The small discrepancy can be attributed to the in uences of rearby
letters. In English there is less tendency to double letterghan there
would be if the letters were independent but with the same prdabilities.
For English the probability of a doubled digram is

X
p(i;i) = :0315

while if letters were independent it would be

X
p? = :0670
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Appendix 5

A Theoretical Case Where All Invariant Statistics of E Are Independent of K .

By an invariant statistic of a sequence of letterskE = :::m »
m 1 mg My my:::ms:::, we will mean a statistic which is averaged
along the length of the sequencd=. More precisely a statistic of the form:

n!I{m ﬁ(F(E n)+ +F(E 1)+ F(E)+ F(E1)+ F(Ep) + + F(Ep))
where F is any function whose argument is a possible sequence, and

E . is the sequenceE shifted N letters to the right or left. Such

statistics as the relative frequency of a given letter, of a iyen n-gram,

transition frequencies, and frequencies with which letteri is followed

by letter j at a distance n are all invariant.

We will describe a system in which every invariant statistic
which the cryptanalyst can construct from the (in nite) int erceptedE
is independent of bothK and M, and thus gives no information to him.
This e ect and still more occurs with the ideal ciphers of couse, but
here it is obtained independently of the original message stistics
and without any matching of the cipher to the language.

Let N be a \random" sequence of letters;

N = n>,n i1NgnNi Ny nNg

this is supposedly a known sequence (to the enemy) and thus aapt of
the system, not of the key. Apply any simple cipher to the mesage and
then add N letter by letter to the result (mod 26). The \sum" is the
enciphered message. It is evident that any invariant statisic on E will

be (with probability 1) the same as that for a random sequence Hence it
is independent of bothK and M.

We need hardly add that such a system is easily broken|the
enemy merely subtractsN from E and then solves the simple residual
cipher, which may often be done with invariant statistics.
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Appendix 6

Maximum Repetition Rate in Compound Systems for a Given Totd Key

We consider brie y the question of how to arrange the com-
ponent periods in a compound Vigerere or Transposition sygeem to
obtain the longest period for a given total key size. If the canponent
periods arePq; Py;:::Pg it is cIeaI':,that they should be coprime.
Otherwise the total key, which is  P;, could be reduced without changing
the period, which is the least common multiple of theP;, merely by
deleting a factor which appears in several of theP; from all but one.
Also eachP must be a power of a prime, for if it contains two primes,
it can be divided into these parts, reducing the key and not a ecting the
period. Thus the component periods are selections from theesies of
primes and powers of primes:

A:2,3,4,5,7,8,9 11, 13,16, 17, 19,23, 25, 27; : ;-
the selection being pairwise coprime.

It appears from empirical evidence that the best choice of
component periods for a given total sizeS is found by the following
process.

1. Determine the largestM such that P 2" pi S where thep; are
the primes in increasing order. This is the maximum
number of periods where the periods are coprime, and is
the number of periods to be used.

2. Choose from the sequencé, M elements, consecutive ex-
cept for the fact that no prime is represented more than
once, theM elements being as great as possible with
sum S.

3. Ifthe sumis S move as many as po ssible of the top ele-
ments in this block up a notch in the sequenceA, still
satisfying the conditions on the sum and coprimality.

4. Repeat 3 to either part of the original block if possible.
This process eventually ends and apparently gives the
proper decomposition.

For example with S = 50, the sum of the rst 6 primes
is 41, of the rst 7 is 58. Hence 6 periods will be used.

we have

11+49+8+7+5+3=43
13+11+9+8+7+5=53
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hence we start with the block 11, 9, 8, 7, 5, 3. The top
4 elements 11, 9, 8, 7 can be moved up a notch to give

13+11+9+8+5+3=49
No further improvement seems possible. We obtain

P=13 11 9 8 5 3=154;440

The products and sums of the rst n primes are given below:

n 1 2 3 4 5 6 7 8
Pn 2 3 5 7 11 13 17 19
Sum 2 5 10 17 28 41 58 77
Product 2 6 30 210 2310 30030 510510 9699590
C. E. SHANNON
Att.

Figures 1-25

9
23
100
223092870
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